==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=14-APR-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION 15-MAR-10 2KVF . COMPND 2 MOLECULE: ZINC FINGER AND BTB DOMAIN-CONTAINING PROTEIN 32; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR C.-C.CHOU,Y.-C.LOU,C.CHEN . 28 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2731.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 13 46.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 21.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 185 0, 0.0 4,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 109.8 12.5 -5.4 0.8 2 2 A R + 0 0 237 12,-0.0 2,-0.1 0, 0.0 0, 0.0 0.928 360.0 54.6 -42.8 -53.6 11.3 -9.1 0.9 3 3 A P S S- 0 0 24 0, 0.0 11,-0.3 0, 0.0 0, 0.0 -0.368 99.3-101.5 -79.7 160.0 7.7 -7.7 1.4 4 4 A Y E -A 13 0A 116 9,-2.6 9,-1.8 8,-0.1 2,-0.3 0.160 37.7-138.5 -65.1-165.4 6.0 -5.2 -0.9 5 5 A S E -A 12 0A 31 7,-0.3 7,-0.3 1,-0.0 -1,-0.0 -0.995 27.4-104.3-157.5 153.0 5.7 -1.5 0.1 6 6 A C - 0 0 0 5,-0.9 6,-0.1 -2,-0.3 3,-0.1 0.712 41.4-157.1 -53.9 -14.1 3.2 1.3 -0.1 7 7 A S S S+ 0 0 87 4,-0.4 -1,-0.2 1,-0.2 5,-0.0 0.677 87.8 43.6 46.0 8.3 5.4 2.5 -3.0 8 8 A V S S+ 0 0 88 3,-0.1 -1,-0.2 0, 0.0 -2,-0.1 0.445 120.1 29.0-143.1 -53.0 3.7 5.8 -1.9 9 9 A C S S- 0 0 63 -3,-0.1 -2,-0.0 2,-0.0 -4,-0.0 0.882 103.5-114.3 -84.8 -40.1 3.7 6.3 1.9 10 10 A G + 0 0 62 1,-0.1 2,-0.1 0, 0.0 -5,-0.0 0.683 68.2 130.8 112.2 29.4 6.8 4.2 2.6 11 11 A K - 0 0 117 8,-0.0 -5,-0.9 2,-0.0 -4,-0.4 -0.383 51.1-117.5-102.0-175.2 5.4 1.3 4.5 12 12 A R E +A 5 0A 161 -7,-0.3 2,-0.3 -2,-0.1 -7,-0.3 -0.937 30.3 167.8-126.2 149.8 5.9 -2.5 4.1 13 13 A F E -A 4 0A 33 -9,-1.8 -9,-2.6 -2,-0.3 3,-0.0 -0.945 28.9-158.2-160.1 136.5 3.5 -5.3 3.2 14 14 A S S S+ 0 0 79 -11,-0.3 2,-0.6 -2,-0.3 3,-0.1 0.362 83.8 74.8 -97.2 6.7 3.8 -8.9 2.1 15 15 A L > - 0 0 112 1,-0.2 4,-2.6 2,-0.0 5,-0.3 -0.858 63.6-163.6-121.4 98.8 0.4 -8.9 0.6 16 16 A K H > S+ 0 0 123 -2,-0.6 4,-3.6 1,-0.3 5,-0.3 0.916 96.5 50.7 -46.2 -45.3 0.2 -7.0 -2.7 17 17 A H H > S+ 0 0 135 2,-0.2 4,-3.5 1,-0.2 -1,-0.3 0.944 108.5 51.9 -60.8 -44.2 -3.6 -6.9 -2.3 18 18 A Q H > S+ 0 0 74 2,-0.2 4,-1.3 1,-0.2 -2,-0.2 0.977 115.6 40.0 -56.9 -54.1 -3.2 -5.6 1.2 19 19 A M H >X S+ 0 0 16 -4,-2.6 4,-1.7 1,-0.2 3,-0.9 0.964 117.4 48.9 -60.2 -48.9 -0.9 -2.8 0.0 20 20 A E H 3X S+ 0 0 137 -4,-3.6 4,-0.7 -5,-0.3 -1,-0.2 0.898 109.1 53.8 -58.4 -36.1 -3.1 -2.3 -3.1 21 21 A T H 3< S+ 0 0 101 -4,-3.5 3,-0.3 -5,-0.3 -1,-0.3 0.778 104.4 56.9 -69.8 -22.1 -6.1 -2.2 -0.8 22 22 A H H X< S+ 0 0 47 -4,-1.3 3,-2.0 -3,-0.9 4,-0.2 0.865 89.6 70.7 -76.9 -34.4 -4.2 0.5 1.2 23 23 A Y H >< S+ 0 0 78 -4,-1.7 3,-4.2 1,-0.3 4,-0.3 0.850 74.5 84.8 -51.8 -30.1 -3.9 2.8 -1.9 24 24 A R T 3< S+ 0 0 208 -4,-0.7 -1,-0.3 1,-0.3 3,-0.2 0.604 85.1 61.9 -50.9 -0.4 -7.7 3.2 -1.5 25 25 A V T < S+ 0 0 99 -3,-2.0 -1,-0.3 1,-0.2 -2,-0.2 0.646 86.9 67.4 -99.4 -19.4 -6.4 5.9 0.8 26 26 A H S < S+ 0 0 67 -3,-4.2 -2,-0.2 -4,-0.2 -1,-0.2 0.271 84.3 99.5 -84.2 15.2 -4.6 7.9 -1.9 27 27 A T 0 0 107 -4,-0.3 -2,-0.1 -3,-0.2 -3,-0.0 0.194 360.0 360.0 -80.2-152.3 -8.0 8.8 -3.3 28 28 A G 0 0 144 0, 0.0 -1,-0.1 0, 0.0 -3,-0.0 0.553 360.0 360.0 135.4 360.0 -9.7 12.1 -2.7