==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-MAR-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 17-MAR-10 2KVL . COMPND 2 MOLECULE: MAJOR OUTER CAPSID PROTEIN VP7; . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.ELAID,S.LIBERSOU,J.LEPAULT,N.MORELLET,S.BOUAZIZ . 61 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6794.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 48 78.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 11.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 38 62.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 151 0, 0.0 2,-0.2 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0-161.1 -38.9 -12.9 7.3 2 2 A D > - 0 0 96 1,-0.1 4,-0.8 4,-0.0 3,-0.2 -0.800 360.0-133.4 172.3 144.3 -38.3 -10.8 4.2 3 3 A V T 4 S+ 0 0 133 -2,-0.2 2,-0.7 1,-0.2 -1,-0.1 0.500 94.3 79.7 -89.0 -1.9 -35.6 -8.7 2.5 4 4 A L T 4 S+ 0 0 152 1,-0.1 -1,-0.2 4,-0.1 3,-0.1 -0.404 108.1 13.7-101.1 59.1 -38.1 -5.8 1.9 5 5 A D T >4 S+ 0 0 79 -2,-0.7 3,-1.4 1,-0.2 2,-0.8 -0.079 85.1 106.1 173.2 -58.8 -38.1 -4.3 5.3 6 6 A I T 3< S- 0 0 105 -4,-0.8 -1,-0.2 1,-0.3 -4,-0.0 -0.189 118.9 -30.3 -47.8 92.7 -35.2 -5.5 7.6 7 7 A T T 3 S- 0 0 111 -2,-0.8 -1,-0.3 -3,-0.1 -2,-0.0 0.988 90.5-172.3 57.1 61.3 -33.2 -2.2 7.4 8 8 A A < - 0 0 46 -3,-1.4 4,-0.2 1,-0.1 3,-0.1 0.501 43.9 -75.2 -60.2-141.6 -34.4 -1.3 3.9 9 9 A D S S+ 0 0 120 1,-0.1 -1,-0.1 2,-0.1 4,-0.1 -0.243 86.9 122.9-119.3 46.9 -32.7 1.6 2.1 10 10 A P S S- 0 0 95 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.961 100.3 -30.5 -71.5 -54.2 -34.3 4.5 4.0 11 11 A T S S+ 0 0 129 -3,-0.1 -2,-0.1 2,-0.0 -3,-0.0 0.194 106.1 107.4-152.1 16.9 -31.2 6.2 5.2 12 12 A T S S- 0 0 69 -4,-0.2 5,-0.1 1,-0.0 -3,-0.1 0.490 77.0-135.0 -79.7 1.0 -28.6 3.4 5.7 13 13 A A > + 0 0 48 1,-0.1 4,-0.9 3,-0.1 -4,-0.1 0.939 41.2 166.1 43.3 60.9 -26.8 4.7 2.6 14 14 A P H >> + 0 0 55 0, 0.0 4,-1.7 0, 0.0 3,-0.7 0.959 68.2 53.6 -71.1 -53.8 -26.4 1.1 1.3 15 15 A Q H 3> S+ 0 0 151 1,-0.3 4,-2.0 2,-0.2 3,-0.2 0.932 110.7 48.0 -48.6 -48.2 -25.3 2.1 -2.3 16 16 A T H 3> S+ 0 0 78 1,-0.2 4,-2.9 2,-0.2 -1,-0.3 0.835 103.2 64.7 -64.4 -28.3 -22.5 4.3 -0.8 17 17 A E H S+ 0 0 133 -4,-2.1 4,-1.9 2,-0.2 5,-0.5 0.990 113.6 56.0 -65.3 -58.2 -8.1 0.1 -4.8 27 27 A W H X5S+ 0 0 193 -4,-2.2 4,-1.3 1,-0.3 -1,-0.2 0.871 110.1 49.3 -42.3 -39.3 -6.5 2.7 -2.5 28 28 A W H X5S+ 0 0 110 -4,-2.0 4,-3.2 -5,-0.2 5,-0.3 0.935 108.1 52.8 -69.7 -43.6 -4.9 -0.3 -0.7 29 29 A Q H X5S+ 0 0 115 -4,-1.9 4,-2.0 -3,-0.4 5,-0.3 0.988 114.9 39.1 -55.8 -61.7 -3.6 -1.8 -3.9 30 30 A V H X5S+ 0 0 73 -4,-1.9 4,-2.6 1,-0.2 -1,-0.2 0.834 115.0 58.5 -59.1 -27.8 -1.8 1.3 -5.1 31 31 A F H XX S+ 0 0 99 -4,-2.4 4,-2.8 1,-0.3 3,-2.0 0.963 111.8 47.2 -46.2 -67.4 15.4 4.4 1.7 43 43 A Q H 3X S+ 0 0 137 -4,-2.0 4,-1.3 1,-0.3 -1,-0.3 0.872 111.4 54.3 -44.2 -37.5 17.7 1.3 1.3 44 44 A L H 3< S+ 0 0 82 -4,-1.7 -1,-0.3 -5,-0.3 -2,-0.2 0.841 111.8 43.6 -68.5 -29.8 19.1 3.2 -1.7 45 45 A M H X< S+ 0 0 143 -4,-2.0 3,-0.6 -3,-2.0 -2,-0.2 0.838 118.5 42.3 -83.9 -33.6 19.8 6.2 0.5 46 46 A S H >< S+ 0 0 78 -4,-2.8 3,-0.6 -5,-0.3 -2,-0.2 0.601 88.7 90.1 -87.9 -10.0 21.2 4.2 3.4 47 47 A K G >< S+ 0 0 127 -4,-1.3 3,-0.5 -5,-0.4 2,-0.3 0.707 71.4 77.5 -59.7 -13.9 23.2 1.9 1.1 48 48 A R G < + 0 0 195 -3,-0.6 -1,-0.3 1,-0.2 -2,-0.1 -0.057 64.4 102.1 -87.0 37.8 26.0 4.5 1.5 49 49 A S G < S- 0 0 99 -3,-0.6 -1,-0.2 -2,-0.3 -2,-0.1 0.920 104.2 -7.0 -85.9 -48.7 26.9 3.1 5.0 50 50 A R S <> S+ 0 0 169 -3,-0.5 4,-1.5 2,-0.1 5,-0.1 -0.109 87.3 129.9-140.0 40.5 30.0 1.0 4.1 51 51 A S H >> S+ 0 0 75 1,-0.2 4,-2.0 2,-0.2 3,-1.0 0.983 78.5 48.0 -61.1 -56.4 30.2 1.1 0.3 52 52 A L H 3> S+ 0 0 144 1,-0.3 4,-1.9 2,-0.2 -1,-0.2 0.838 112.0 52.8 -55.2 -28.7 33.9 2.1 0.2 53 53 A N H 3> S+ 0 0 50 2,-0.2 4,-1.6 1,-0.2 -1,-0.3 0.799 105.2 54.3 -78.2 -25.7 34.5 -0.7 2.8 54 54 A S H