==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER OXYGEN STORAGE/TRANSPORT 30-JAN-02 1KX2 . COMPND 2 MOLECULE: MONO-HEME C-TYPE CYTOCHROME SCYA; . SOURCE 2 ORGANISM_SCIENTIFIC: SHEWANELLA PUTREFACIENS; . AUTHOR I.BARTALESI,I.BERTINI,P.HAJIEVA,A.ROSATO,P.R.VASOS . 81 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5552.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 46 56.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 13 16.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 25 30.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 -3 A A 0 0 109 0, 0.0 2,-0.4 0, 0.0 8,-0.1 0.000 360.0 360.0 360.0-123.3 3.0 -1.7 -16.2 2 -2 A D - 0 0 115 3,-0.1 2,-0.4 6,-0.1 3,-0.3 -0.995 360.0-170.5-157.8 125.5 5.4 -4.1 -14.4 3 -1 A L + 0 0 65 -2,-0.4 3,-0.1 1,-0.2 66,-0.1 -0.731 62.4 99.2-121.4 62.2 5.4 -6.7 -11.7 4 1 A Q S S+ 0 0 177 -2,-0.4 2,-0.3 1,-0.3 -1,-0.2 0.463 82.3 32.6-116.9 -19.2 9.1 -7.3 -11.1 5 2 A D > - 0 0 79 -3,-0.3 4,-2.8 1,-0.1 -1,-0.3 -0.937 57.0-144.8-152.9 122.4 9.8 -5.2 -8.1 6 3 A A H > S+ 0 0 14 -2,-0.3 4,-2.8 2,-0.2 5,-0.3 0.860 109.4 54.7 -43.2 -44.7 7.9 -4.1 -4.9 7 4 A E H > S+ 0 0 84 2,-0.2 4,-3.0 1,-0.2 5,-0.2 0.957 109.8 44.9 -59.4 -47.8 9.8 -0.7 -5.3 8 5 A A H > S+ 0 0 43 2,-0.2 4,-2.0 1,-0.2 5,-0.2 0.897 113.1 52.6 -66.5 -36.0 8.6 -0.3 -8.9 9 6 A I H X S+ 0 0 18 -4,-2.8 4,-2.5 2,-0.2 5,-0.5 0.970 117.5 34.6 -66.0 -52.9 5.1 -1.3 -7.9 10 7 A Y H < S+ 0 0 42 -4,-2.8 -2,-0.2 3,-0.2 -1,-0.2 0.926 117.1 54.8 -69.7 -38.6 4.7 1.2 -5.0 11 8 A N H < S+ 0 0 90 -4,-3.0 -1,-0.2 -5,-0.3 -2,-0.2 0.790 120.0 32.2 -69.4 -27.0 6.8 3.9 -6.8 12 9 A K H < S+ 0 0 138 -4,-2.0 -1,-0.2 -5,-0.2 -2,-0.2 0.737 136.0 24.1 -91.2 -29.9 4.5 3.7 -9.8 13 10 A A S >< S+ 0 0 16 -4,-2.5 2,-2.0 -5,-0.2 3,-1.0 0.884 122.3 43.0-101.9 -66.0 1.2 2.9 -8.0 14 11 A C T 3 S+ 0 0 36 -5,-0.5 -1,-0.1 1,-0.2 -4,-0.1 -0.194 101.2 83.6 -78.3 47.4 1.2 4.0 -4.3 15 12 A T T 3 S+ 0 0 41 -2,-2.0 4,-0.4 -3,-0.2 5,-0.3 0.629 71.1 62.6-125.9 -29.1 2.9 7.3 -5.5 16 13 A V S < S+ 0 0 98 -3,-1.0 4,-0.2 3,-0.1 6,-0.2 0.927 125.1 12.1 -72.5 -45.5 0.1 9.6 -6.7 17 14 A C S >>S+ 0 0 45 -4,-0.3 4,-2.6 4,-0.1 5,-2.1 0.873 130.2 46.8 -98.1 -53.8 -1.6 9.9 -3.3 18 15 A H T 45S+ 0 0 32 3,-0.2 10,-1.3 1,-0.2 -3,-0.2 0.659 100.7 64.5 -78.8 -20.8 0.8 8.4 -0.7 19 16 A S T 45S+ 0 0 70 -4,-0.4 -1,-0.2 8,-0.2 10,-0.1 0.948 126.5 11.2 -66.7 -48.8 4.1 10.1 -1.8 20 17 A M T 45S- 0 0 160 -5,-0.3 -2,-0.2 -3,-0.2 -1,-0.1 0.704 108.8-108.7 -97.7 -30.0 2.8 13.6 -0.9 21 18 A G T ><5 + 0 0 28 -4,-2.6 3,-0.7 5,-0.1 -3,-0.2 0.812 54.9 169.5 91.9 45.7 -0.4 12.7 1.0 22 19 A V G > < + 0 0 84 -5,-2.1 3,-2.4 1,-0.2 -1,-0.1 -0.453 63.1 23.9 -84.3 157.3 -3.0 13.8 -1.5 23 20 A A G 3 S- 0 0 77 1,-0.3 -1,-0.2 -2,-0.1 32,-0.1 0.729 136.7 -67.4 56.8 23.7 -6.7 12.9 -1.1 24 21 A G G < S+ 0 0 72 -3,-0.7 -1,-0.3 1,-0.2 -2,-0.2 0.657 86.9 169.7 70.6 19.1 -5.9 12.6 2.6 25 22 A A < - 0 0 19 -3,-2.4 -1,-0.2 -8,-0.1 2,-0.1 -0.364 37.2-113.9 -65.4 139.8 -3.7 9.5 1.9 26 23 A P - 0 0 36 0, 0.0 -5,-0.1 0, 0.0 -1,-0.1 -0.446 44.3 -92.3 -72.5 145.3 -1.5 8.3 4.8 27 24 A K > - 0 0 102 -2,-0.1 3,-0.6 1,-0.1 -8,-0.2 -0.141 14.8-129.3 -69.3 154.4 2.3 8.7 4.2 28 25 A S T 3 S+ 0 0 26 -10,-1.3 2,-0.2 1,-0.2 -1,-0.1 0.820 107.0 33.0 -56.6 -39.7 4.7 6.2 2.8 29 26 A H T 3 S+ 0 0 158 -10,-0.1 2,-0.3 49,-0.0 -1,-0.2 -0.616 84.1 121.0-132.4 73.8 7.0 6.7 5.8 30 27 A N < - 0 0 54 -3,-0.6 0, 0.0 -2,-0.2 0, 0.0 -0.802 43.1-156.7-113.0 166.4 5.1 7.5 9.0 31 28 A T S > S+ 0 0 103 -2,-0.3 4,-2.8 3,-0.1 3,-0.4 0.732 94.3 46.2-107.0 -37.0 5.2 5.6 12.4 32 29 A A T 4 S+ 0 0 73 1,-0.2 -2,-0.0 2,-0.2 0, 0.0 0.736 111.7 52.3 -78.3 -22.7 1.8 6.8 13.9 33 30 A D T 4 S+ 0 0 36 2,-0.1 -1,-0.2 1,-0.1 -2,-0.1 0.712 117.3 39.1 -80.4 -26.7 -0.0 6.1 10.6 34 31 A W T >> S+ 0 0 2 -3,-0.4 4,-2.7 3,-0.1 3,-1.8 0.779 99.8 75.4 -96.7 -34.3 1.4 2.5 10.5 35 32 A E H 3X S+ 0 0 121 -4,-2.8 4,-1.0 1,-0.3 2,-0.5 0.916 93.9 50.8 -40.8 -60.4 1.2 1.8 14.3 36 33 A P H 34 S+ 0 0 72 0, 0.0 -1,-0.3 0, 0.0 -2,-0.1 0.084 117.4 42.6 -76.5 27.6 -2.7 1.2 14.1 37 34 A R H X> S+ 0 0 101 -3,-1.8 3,-2.1 -2,-0.5 4,-1.9 0.438 108.8 53.0-127.5 -53.0 -2.1 -1.2 11.2 38 35 A L H 3< S+ 0 0 76 -4,-2.7 -3,-0.2 1,-0.3 4,-0.1 0.546 98.0 72.0 -58.1 -10.6 1.0 -3.2 12.5 39 36 A A T 3< S+ 0 0 84 -4,-1.0 -1,-0.3 -5,-0.3 3,-0.1 0.736 106.8 33.4 -80.3 -27.6 -1.2 -3.8 15.6 40 37 A K T <4 S- 0 0 176 -3,-2.1 2,-0.3 1,-0.3 -2,-0.2 0.875 120.5-109.8 -87.9 -54.7 -3.3 -6.2 13.6 41 38 A G < - 0 0 22 -4,-1.9 -1,-0.3 1,-0.1 -2,-0.0 -0.924 31.5 -75.4 163.5-129.3 -0.5 -7.5 11.3 42 39 A V S >> S+ 0 0 43 -2,-0.3 3,-2.4 -3,-0.1 4,-0.9 0.593 110.9 59.3-126.3 -63.9 0.3 -7.2 7.6 43 40 A D T 34 S+ 0 0 75 1,-0.3 4,-0.1 2,-0.2 38,-0.0 0.246 92.7 74.1 -68.9 17.7 -2.0 -9.3 5.3 44 41 A N T 3> S+ 0 0 64 -2,-0.5 4,-0.8 36,-0.2 -1,-0.3 0.647 100.2 41.7 -93.9 -26.2 -5.1 -7.4 6.7 45 42 A L H <> S+ 0 0 30 -3,-2.4 4,-2.1 35,-0.4 -2,-0.2 0.860 100.6 67.4 -95.0 -40.1 -4.2 -4.2 4.7 46 43 A V H X S+ 0 0 3 -4,-0.9 4,-2.5 34,-0.3 -1,-0.1 0.807 103.3 52.8 -41.8 -33.1 -3.2 -6.0 1.4 47 44 A K H > S+ 0 0 116 2,-0.2 4,-2.9 1,-0.2 5,-0.2 0.951 104.3 49.6 -73.7 -51.5 -7.0 -6.9 1.4 48 45 A S H X>S+ 0 0 48 -4,-0.8 4,-0.9 1,-0.2 5,-0.6 0.784 114.1 52.1 -58.8 -24.8 -8.3 -3.3 1.7 49 46 A V H ><5S+ 0 0 27 -4,-2.1 10,-1.2 2,-0.2 3,-0.9 0.978 110.1 42.5 -73.1 -60.2 -5.9 -2.6 -1.1 50 47 A K H 3<5S+ 0 0 98 -4,-2.5 9,-0.5 9,-0.3 -2,-0.2 0.866 117.1 50.3 -57.4 -33.5 -7.0 -5.3 -3.5 51 48 A T H 3<5S- 0 0 104 -4,-2.9 -1,-0.3 7,-0.2 -2,-0.2 0.775 112.0-122.2 -71.9 -30.1 -10.6 -4.5 -2.7 52 49 A G T <<5 - 0 0 22 -3,-0.9 -3,-0.2 -4,-0.9 -2,-0.1 0.860 19.0-130.9 78.5 95.0 -10.2 -0.7 -3.2 53 50 A L > < - 0 0 95 -5,-0.6 3,-2.0 4,-0.2 7,-0.1 -0.139 43.5 -78.3 -61.8 172.0 -11.0 1.6 -0.3 54 51 A N T 3 S+ 0 0 166 1,-0.3 -1,-0.0 3,-0.0 0, 0.0 0.857 132.3 22.2 -45.9 -63.4 -13.4 4.6 -0.8 55 52 A A T 3 S+ 0 0 84 -32,-0.1 -1,-0.3 2,-0.1 -2,-0.1 0.270 114.7 90.6 -84.0 5.6 -10.9 7.0 -2.4 56 53 A M S < S- 0 0 50 -3,-2.0 3,-0.1 -5,-0.0 4,-0.1 -0.920 78.1-122.5-114.5 125.9 -8.6 4.0 -3.5 57 54 A P > - 0 0 61 0, 0.0 3,-2.3 0, 0.0 4,-0.3 -0.315 41.0 -93.9 -64.9 144.8 -8.9 2.1 -6.8 58 55 A P G > S+ 0 0 101 0, 0.0 3,-0.5 0, 0.0 -7,-0.2 -0.343 118.2 26.3 -57.7 130.6 -9.5 -1.7 -6.6 59 56 A G G > S- 0 0 13 -10,-1.2 3,-1.4 -9,-0.5 -9,-0.3 0.408 124.6 -88.4 93.7 -4.3 -6.1 -3.4 -6.7 60 57 A G G < S- 0 0 15 -3,-2.3 -1,-0.2 -11,-0.9 -10,-0.1 0.775 88.1 -53.5 62.7 28.1 -4.5 -0.2 -5.3 61 58 A M G < S+ 0 0 123 -3,-0.5 2,-0.4 -4,-0.3 -1,-0.3 0.225 120.0 110.7 85.7 -4.2 -4.1 0.9 -8.9 62 59 A a < - 0 0 31 -3,-1.4 -1,-0.3 -5,-0.2 3,-0.1 -0.828 46.6-168.5 -97.0 138.8 -2.4 -2.4 -10.0 63 60 A T S S+ 0 0 138 -2,-0.4 2,-1.1 1,-0.1 -1,-0.2 0.952 79.8 30.3 -80.2 -78.8 -4.1 -5.0 -12.3 64 61 A D S S+ 0 0 143 2,-0.0 2,-0.3 0, 0.0 -1,-0.1 -0.014 85.1 153.2 -83.3 32.4 -2.2 -8.3 -12.4 65 62 A a - 0 0 22 -2,-1.1 2,-0.3 -3,-0.1 -3,-0.0 -0.509 30.2-154.8 -84.3 129.6 -0.7 -8.0 -8.9 66 63 A T >> - 0 0 64 -2,-0.3 4,-2.7 1,-0.1 3,-0.6 -0.734 30.5-114.3 -97.4 141.1 0.3 -11.1 -6.8 67 64 A D H 3> S+ 0 0 74 -2,-0.3 4,-3.2 1,-0.2 5,-0.4 0.787 114.2 65.6 -40.6 -39.2 0.4 -11.1 -2.9 68 65 A E H 3> S+ 0 0 146 2,-0.2 4,-2.3 1,-0.2 -1,-0.2 0.965 113.1 28.2 -45.7 -65.2 4.2 -11.6 -3.3 69 66 A D H <> S+ 0 0 33 -3,-0.6 4,-2.2 1,-0.2 -2,-0.2 0.870 120.6 59.1 -73.5 -32.5 4.9 -8.2 -4.9 70 67 A Y H X S+ 0 0 20 -4,-2.7 4,-2.2 2,-0.2 -2,-0.2 0.947 112.9 35.6 -55.0 -55.6 1.8 -6.7 -3.1 71 68 A K H X S+ 0 0 72 -4,-3.2 4,-3.3 2,-0.2 5,-0.3 0.952 113.8 57.0 -74.3 -45.1 3.1 -7.5 0.4 72 69 A A H X S+ 0 0 29 -4,-2.3 4,-1.9 -5,-0.4 -1,-0.2 0.862 109.2 49.6 -46.9 -39.6 6.7 -6.8 -0.5 73 70 A A H X S+ 0 0 3 -4,-2.2 4,-1.1 2,-0.2 -2,-0.2 0.953 111.5 46.1 -67.8 -48.5 5.4 -3.3 -1.6 74 71 A I H X>S+ 0 0 10 -4,-2.2 4,-1.4 1,-0.2 6,-0.6 0.905 116.0 47.5 -57.4 -42.6 3.6 -2.8 1.7 75 72 A E H <5S+ 0 0 113 -4,-3.3 -2,-0.2 4,-0.2 4,-0.2 0.766 96.5 70.6 -76.5 -22.6 6.7 -4.0 3.6 76 73 A F H <5S+ 0 0 97 -4,-1.9 -1,-0.2 -5,-0.3 -2,-0.2 0.911 109.2 37.4 -52.3 -43.5 9.0 -1.7 1.5 77 74 A M H <5S- 0 0 37 -4,-1.1 -2,-0.2 -3,-0.4 -3,-0.1 0.991 144.2 -47.0 -71.7 -79.1 7.4 1.1 3.5 78 75 A S T <5S- 0 0 45 -4,-1.4 -3,-0.2 -44,-0.0 -2,-0.1 -0.049 73.9-101.2-159.7 43.6 6.8 -0.1 7.1 79 76 A K S