==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-MAY-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 14-MAY-10 2KY3 . COMPND 2 MOLECULE: POTASSIUM CHANNEL TOXIN ALPHA-KTX 5.4; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS TAMULUS; . AUTHOR F.DEL RIO-PORTILLA,B.E.RAMIREZ-CORDERO,L.BRIEBA-DE CASTRO . 33 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2710.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 12.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 5 15.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 18.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 18.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 115 0, 0.0 24,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-132.4 11.0 13.3 30.0 2 2 A S + 0 0 93 1,-0.2 2,-0.3 2,-0.0 24,-0.1 0.778 360.0 153.5 51.2 37.3 11.0 15.4 26.8 3 3 A A - 0 0 42 1,-0.1 2,-2.3 3,-0.0 -1,-0.2 -0.682 51.9 -5.9 -98.1 153.1 9.2 18.3 28.5 4 4 A F S S+ 0 0 208 -2,-0.3 2,-0.4 1,-0.0 22,-0.1 -0.228 104.6 90.5 64.6 -43.3 9.2 22.1 27.8 5 5 A a - 0 0 44 -2,-2.3 2,-0.5 20,-0.3 20,-0.1 -0.691 57.9-160.0 -82.8 129.8 11.8 22.1 24.9 6 6 A N >> - 0 0 84 -2,-0.4 4,-2.2 1,-0.1 3,-1.0 -0.928 16.1-144.5 -98.0 130.2 10.7 21.7 21.3 7 7 A L H 3> S+ 0 0 64 -2,-0.5 4,-2.9 1,-0.2 5,-0.1 0.909 103.4 62.3 -55.7 -36.8 13.5 20.6 18.9 8 8 A R H 3> S+ 0 0 115 1,-0.2 4,-1.0 2,-0.2 -1,-0.2 0.800 106.7 43.4 -56.7 -32.8 11.7 22.9 16.3 9 9 A R H <> S+ 0 0 154 -3,-1.0 4,-0.8 2,-0.2 -1,-0.2 0.842 111.8 51.5 -87.9 -32.9 12.5 25.9 18.6 10 10 A b H >X S+ 0 0 5 -4,-2.2 4,-1.2 2,-0.2 3,-0.7 0.887 103.6 61.5 -63.8 -35.8 16.0 24.8 19.3 11 11 A E H >X S+ 0 0 27 -4,-2.9 4,-1.7 10,-0.3 3,-1.0 0.948 106.1 45.6 -51.5 -50.0 16.5 24.5 15.5 12 12 A L H 3< S+ 0 0 99 -4,-1.0 4,-0.3 1,-0.3 -1,-0.2 0.584 106.6 57.2 -80.2 -10.6 15.7 28.2 15.2 13 13 A S H << S+ 0 0 86 -4,-0.8 -1,-0.3 -3,-0.7 -2,-0.2 0.734 120.0 33.2 -73.0 -24.9 18.1 29.1 18.1 14 14 A c H X<>S+ 0 0 0 -4,-1.2 5,-1.0 -3,-1.0 3,-0.8 0.583 103.1 68.1-111.8 -19.3 20.8 27.4 16.1 15 15 A R G ><5S+ 0 0 103 -4,-1.7 3,-2.1 1,-0.2 -3,-0.1 0.833 84.6 73.3 -82.4 -27.1 20.1 28.0 12.3 16 16 A S G 3 5S+ 0 0 107 -4,-0.3 -1,-0.2 1,-0.3 -2,-0.1 0.420 98.4 54.3 -49.3 -8.3 20.9 31.7 12.6 17 17 A L G < 5S- 0 0 105 -3,-0.8 -1,-0.3 2,-0.2 -2,-0.2 0.415 123.1-100.7-113.8 -10.5 24.4 30.4 12.9 18 18 A G T < 5S+ 0 0 69 -3,-2.1 2,-0.2 1,-0.3 -3,-0.2 0.663 94.3 98.7 82.4 20.8 24.7 28.2 9.6 19 19 A L S S- 0 0 117 -2,-0.7 3,-1.4 3,-0.5 2,-0.6 -0.714 71.8 -4.6 -80.4 140.4 16.2 16.0 22.2 25 25 A G T 3 S- 0 0 17 -2,-0.3 -20,-0.3 1,-0.2 -2,-0.1 -0.652 128.8 -52.8 70.1-113.8 14.9 15.7 25.8 26 26 A E T 3 S+ 0 0 115 -2,-0.6 2,-0.7 -24,-0.1 -1,-0.2 0.148 112.4 100.9-133.7 14.6 15.3 19.3 27.1 27 27 A E < - 0 0 147 -3,-1.4 -3,-0.5 -22,-0.1 2,-0.2 -0.808 61.8-146.8-118.5 89.9 19.0 19.9 26.3 28 28 A b + 0 0 70 -2,-0.7 2,-0.3 -5,-0.2 -5,-0.3 -0.355 17.7 179.7 -65.8 128.1 19.6 22.0 23.1 29 29 A K E -A 22 0A 124 -7,-1.8 -7,-3.1 -2,-0.2 2,-0.4 -0.921 18.5-147.0-109.9 148.3 22.7 21.3 20.9 30 30 A c E -A 21 0A 52 -2,-0.3 -9,-0.2 -9,-0.2 -19,-0.0 -0.956 25.5-170.0-111.1 143.4 23.7 23.2 17.6 31 31 A V E -A 20 0A 33 -11,-2.5 -11,-2.9 -2,-0.4 2,-1.4 -0.975 33.3-105.0-139.4 135.9 25.4 20.9 15.1 32 32 A P 0 0 112 0, 0.0 -13,-0.1 0, 0.0 -11,-0.0 -0.501 360.0 360.0 -66.3 90.4 27.3 21.3 11.8 33 33 A Y 0 0 235 -2,-1.4 -14,-0.1 -15,-0.1 -15,-0.0 0.950 360.0 360.0 -59.0 360.0 24.6 20.0 9.4