==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-MAY-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 28-MAY-10 2KYJ . COMPND 2 MOLECULE: LITX; . SOURCE 2 SYNTHETIC: YES; . AUTHOR J.SMITH,J.HILL,P.F.ALEWOOD,G.F.KING . 36 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3229.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 16 44.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A D 0 0 212 0, 0.0 14,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 144.8 -13.1 -8.7 -1.9 2 2 A F - 0 0 135 12,-0.1 14,-0.0 1,-0.1 0, 0.0 -0.704 360.0-100.6-105.6 157.5 -9.6 -8.6 -3.4 3 3 A P - 0 0 106 0, 0.0 13,-0.7 0, 0.0 2,-0.5 -0.177 42.2 -95.0 -69.7 165.6 -6.3 -9.9 -2.1 4 4 A L E -a 16 0A 84 11,-0.1 13,-0.2 13,-0.1 7,-0.1 -0.730 38.4-136.8 -88.2 126.9 -3.6 -7.7 -0.4 5 5 A S E -a 17 0A 26 11,-2.6 13,-1.4 -2,-0.5 2,-0.1 -0.209 18.3-116.6 -74.9 169.5 -0.8 -6.5 -2.7 6 6 A K - 0 0 147 1,-0.2 3,-0.3 11,-0.1 23,-0.3 -0.413 51.0 -52.3-100.3 178.6 2.9 -6.5 -1.8 7 7 A E S S+ 0 0 113 1,-0.2 -1,-0.2 -2,-0.1 23,-0.1 -0.190 125.3 16.1 -51.8 137.8 5.4 -3.6 -1.4 8 8 A Y S S+ 0 0 122 21,-1.9 2,-0.3 1,-0.2 -1,-0.2 0.973 100.5 128.8 59.9 58.0 5.4 -1.3 -4.4 9 9 A E - 0 0 86 -3,-0.3 20,-1.2 -4,-0.1 -1,-0.2 -0.954 65.7 -78.2-140.8 158.9 2.1 -2.5 -5.9 10 10 A S B -B 28 0B 50 -2,-0.3 18,-0.2 18,-0.2 -5,-0.2 -0.181 33.8-177.7 -55.2 145.9 -1.1 -1.0 -7.1 11 11 A a + 0 0 11 16,-2.4 17,-0.2 15,-0.2 -1,-0.1 0.323 24.9 147.9-126.8 0.4 -3.6 0.1 -4.4 12 12 A V > - 0 0 64 15,-0.6 3,-1.4 1,-0.1 4,-0.1 -0.169 58.4 -74.0 -43.9 106.7 -6.4 1.3 -6.6 13 13 A R T 3 S+ 0 0 204 1,-0.4 3,-0.1 -2,-0.0 -1,-0.1 0.055 121.9 34.6 -43.5 155.8 -9.5 0.4 -4.5 14 14 A P T 3 S+ 0 0 80 0, 0.0 -1,-0.4 0, 0.0 -12,-0.1 -0.984 109.9 88.9 -69.7 -6.8 -11.0 -1.8 -3.6 15 15 A R < - 0 0 116 -3,-1.4 2,-0.3 1,-0.1 -11,-0.1 0.013 63.1-163.5 -43.3 151.3 -7.5 -3.2 -3.8 16 16 A K E -a 4 0A 126 -13,-0.7 -11,-2.6 -6,-0.1 2,-0.6 -0.927 18.4-123.9-139.7 163.6 -5.4 -2.7 -0.6 17 17 A b E -a 5 0A 8 -2,-0.3 -11,-0.1 -13,-0.2 6,-0.1 -0.940 31.4-119.4-115.7 115.7 -1.8 -2.9 0.5 18 18 A K > - 0 0 116 -13,-1.4 3,-0.6 -2,-0.6 0, 0.0 -0.169 54.7 -67.6 -50.7 137.2 -0.8 -5.3 3.3 19 19 A P T 3 S+ 0 0 86 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.128 111.4 33.5 -69.8 169.2 0.7 -3.5 6.3 20 20 A P T 3 S+ 0 0 81 0, 0.0 10,-0.1 0, 0.0 -3,-0.0 -0.983 106.2 91.1 -69.8 -7.8 2.6 -2.0 7.6 21 21 A L < - 0 0 16 -3,-0.6 2,-0.3 10,-0.1 10,-0.2 -0.049 65.4-155.9 -42.8 140.3 2.8 -0.7 4.0 22 22 A K E -C 30 0C 104 8,-1.6 8,-2.0 -3,-0.1 2,-0.3 -0.911 11.5-120.7-125.4 152.8 0.5 2.3 3.5 23 23 A a E -C 29 0C 50 -2,-0.3 2,-0.2 6,-0.2 6,-0.2 -0.713 31.7-179.7 -93.9 142.0 -1.2 3.7 0.4 24 24 A N > - 0 0 32 4,-0.7 3,-2.4 -2,-0.3 4,-0.1 -0.513 52.2 -68.2-123.9-167.9 -0.6 7.3 -0.7 25 25 A K T 3 S+ 0 0 206 1,-0.3 -2,-0.0 -2,-0.2 0, 0.0 0.766 129.2 64.7 -56.6 -25.1 -1.7 9.7 -3.5 26 26 A A T 3 S- 0 0 44 2,-0.1 -1,-0.3 1,-0.0 -15,-0.2 0.289 106.8-130.3 -81.9 11.1 0.2 7.4 -5.9 27 27 A Q < + 0 0 110 -3,-2.4 -16,-2.4 1,-0.2 -15,-0.6 0.873 68.4 117.6 38.7 50.9 -2.3 4.6 -5.0 28 28 A I B S-B 10 0B 60 -18,-0.2 -4,-0.7 -17,-0.2 2,-0.6 -0.886 73.6 -92.5-138.8 169.4 0.7 2.3 -4.3 29 29 A b E +C 23 0C 0 -20,-1.2 -21,-1.9 -2,-0.3 2,-0.3 -0.760 51.0 156.7 -89.5 119.1 2.2 0.3 -1.5 30 30 A V E -C 22 0C 14 -8,-2.0 -8,-1.6 -2,-0.6 4,-0.1 -0.948 42.3-113.2-147.3 122.4 4.9 2.2 0.4 31 31 A D > - 0 0 52 -2,-0.3 3,-1.3 -10,-0.2 4,-0.3 -0.081 25.4-122.6 -49.9 149.1 6.2 1.8 3.9 32 32 A P T 3 S+ 0 0 57 0, 0.0 3,-0.2 0, 0.0 -1,-0.1 0.656 113.3 50.4 -69.9 -15.8 5.5 4.6 6.4 33 33 A N T 3 S+ 0 0 155 1,-0.1 -2,-0.1 2,-0.1 0, 0.0 -0.044 82.0 96.4-112.1 29.4 9.2 4.9 7.0 34 34 A K S < S- 0 0 119 -3,-1.3 -1,-0.1 -4,-0.1 -3,-0.1 0.805 99.7-104.6 -86.3 -33.3 10.2 5.1 3.4 35 35 A G 0 0 75 -4,-0.3 -2,-0.1 -3,-0.2 -4,-0.0 0.721 360.0 360.0 111.8 35.6 10.4 8.9 3.2 36 36 A W 0 0 162 -5,-0.3 -1,-0.2 -4,-0.1 -2,-0.0 -0.515 360.0 360.0-108.6 360.0 7.2 9.8 1.3