==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=29-MAY-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIGASE 28-MAY-10 2KYK . COMPND 2 MOLECULE: E3 UBIQUITIN-PROTEIN LIGASE ITCHY HOMOLOG; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR M.SEO,S.PARK,S.SEOK,J.KIM,M.CHA,B.LEE . 39 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4213.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 46.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 20.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 8 20.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 119 0, 0.0 4,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 91.2 1.7 8.0 -13.6 2 2 A R - 0 0 186 2,-0.5 3,-0.1 3,-0.0 0, 0.0 0.610 360.0 -52.3-127.9 -45.2 -1.8 6.8 -14.4 3 3 A A S S+ 0 0 99 1,-0.5 2,-0.1 2,-0.1 0, 0.0 0.226 114.8 43.7-166.7 -43.8 -4.2 9.7 -13.9 4 4 A M S S- 0 0 162 1,-0.2 -2,-0.5 0, 0.0 -1,-0.5 -0.302 98.5 -58.5-104.8-169.5 -3.7 11.2 -10.4 5 5 A G - 0 0 44 -2,-0.1 -1,-0.2 1,-0.1 -2,-0.1 -0.328 61.7 -96.5 -71.8 155.3 -0.7 12.1 -8.3 6 6 A P - 0 0 123 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 0.272 36.3-113.8 -55.0-169.8 2.0 9.4 -7.4 7 7 A L - 0 0 70 3,-0.0 3,-0.1 6,-0.0 6,-0.0 -0.953 20.9-127.7-139.0 117.8 2.0 7.6 -4.0 8 8 A P - 0 0 102 0, 0.0 2,-3.5 0, 0.0 3,-0.3 0.084 54.8 -70.0 -51.9 172.2 4.7 7.9 -1.3 9 9 A P S S+ 0 0 118 0, 0.0 3,-0.1 0, 0.0 17,-0.1 -0.272 127.8 50.9 -67.5 62.6 6.4 4.7 0.0 10 10 A G S S+ 0 0 16 -2,-3.5 2,-1.1 1,-0.2 16,-0.4 0.219 88.0 66.5-156.3 -64.1 3.2 3.6 1.8 11 11 A W + 0 0 93 -3,-0.3 2,-0.6 14,-0.2 -1,-0.2 -0.633 61.4 172.3 -77.4 99.9 0.1 3.6 -0.3 12 12 A E E +A 24 0A 60 12,-1.9 12,-2.3 -2,-1.1 2,-0.5 -0.876 6.0 159.5-117.0 100.5 0.9 0.8 -2.8 13 13 A R E +A 23 0A 66 -2,-0.6 10,-0.2 10,-0.3 2,-0.2 -0.938 21.4 120.0-124.7 109.7 -2.1 -0.2 -5.1 14 14 A R E -A 22 0A 88 8,-1.1 8,-1.8 -2,-0.5 2,-0.3 -0.791 61.5 -63.1-148.3-170.0 -1.3 -2.0 -8.3 15 15 A V E -A 21 0A 71 6,-0.2 2,-1.0 -2,-0.2 6,-0.2 -0.647 41.0-129.2 -88.2 142.8 -1.9 -5.2 -10.3 16 16 A D > - 0 0 52 4,-2.0 2,-3.2 -2,-0.3 3,-0.6 -0.784 69.4 -57.1 -95.2 100.0 -0.7 -8.6 -9.0 17 17 A N T 3 S- 0 0 168 -2,-1.0 -2,-0.1 1,-0.2 -1,-0.1 -0.341 118.4 -32.8 67.3 -68.6 1.2 -10.2 -11.8 18 18 A M T 3 S+ 0 0 185 -2,-3.2 -1,-0.2 2,-0.1 3,-0.1 0.043 121.1 73.2-176.5 46.1 -1.7 -10.1 -14.1 19 19 A G S < S- 0 0 56 -3,-0.6 2,-0.2 1,-0.4 -2,-0.1 0.215 88.1 -13.0-128.6-109.5 -5.0 -10.4 -12.2 20 20 A R - 0 0 164 -4,-0.2 -4,-2.0 -5,-0.0 2,-0.5 -0.487 60.3-115.6 -99.7 172.0 -6.8 -7.9 -10.0 21 21 A I E +A 15 0A 60 -6,-0.2 2,-0.3 -2,-0.2 -6,-0.2 -0.937 33.4 176.7-113.7 128.3 -5.7 -4.7 -8.4 22 22 A Y E -A 14 0A 53 -8,-1.8 -8,-1.1 -2,-0.5 2,-0.9 -0.829 33.8-118.9-126.1 164.8 -5.4 -4.3 -4.6 23 23 A Y E +AB 13 32A 76 9,-2.5 9,-1.9 -2,-0.3 -10,-0.3 -0.783 38.8 179.8-107.1 88.0 -4.2 -1.5 -2.3 24 24 A V E -AB 12 31A 17 -12,-2.3 -12,-1.9 -2,-0.9 7,-0.3 -0.664 18.0-135.5 -90.8 142.9 -1.3 -3.0 -0.3 25 25 A D - 0 0 35 5,-3.0 -14,-0.2 -2,-0.3 -15,-0.1 -0.401 6.0-152.8 -90.9 170.5 0.6 -1.1 2.3 26 26 A H S S+ 0 0 108 -16,-0.4 -16,-0.1 -2,-0.1 -1,-0.1 0.644 93.6 45.4-114.2 -28.1 4.4 -0.8 2.8 27 27 A F S S+ 0 0 186 -17,-0.2 -17,-0.1 1,-0.1 -2,-0.0 0.779 128.3 27.3 -86.9 -30.2 4.6 -0.1 6.6 28 28 A T S S- 0 0 85 2,-0.2 3,-0.1 -18,-0.1 -1,-0.1 0.690 89.6-146.1-101.6 -26.5 2.1 -2.8 7.6 29 29 A R + 0 0 198 1,-0.3 -3,-0.0 0, 0.0 -2,-0.0 0.087 61.9 116.5 80.6 -23.4 2.6 -5.1 4.6 30 30 A T - 0 0 101 -6,-0.1 -5,-3.0 1,-0.1 2,-0.3 -0.178 57.5-133.8 -69.9 168.5 -1.1 -6.0 4.7 31 31 A T E -B 24 0A 35 -7,-0.3 2,-0.4 -3,-0.1 -7,-0.3 -0.877 10.4-154.9-126.5 161.3 -3.4 -5.2 1.8 32 32 A T E +B 23 0A 87 -9,-1.9 -9,-2.5 -2,-0.3 3,-0.1 -0.988 57.0 91.5-138.3 123.3 -6.8 -3.7 1.3 33 33 A W + 0 0 117 1,-0.4 2,-0.2 -2,-0.4 -1,-0.1 0.159 64.9 89.0-177.2 -30.8 -9.1 -4.5 -1.6 34 34 A Q - 0 0 143 -3,-0.1 -1,-0.4 1,-0.0 -12,-0.0 -0.521 60.1-147.6 -86.8 154.1 -11.2 -7.4 -0.6 35 35 A R - 0 0 200 -2,-0.2 -1,-0.0 -3,-0.1 -3,-0.0 -0.855 21.9 -98.2-121.7 157.2 -14.6 -7.1 1.2 36 36 A P + 0 0 129 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.207 38.0 162.9 -68.9 162.6 -16.4 -9.3 3.8 37 37 A T + 0 0 128 1,-0.1 2,-2.1 0, 0.0 0, 0.0 0.430 54.1 82.5-145.8 -47.4 -19.1 -11.8 2.9 38 38 A L 0 0 170 1,-0.2 -1,-0.1 0, 0.0 0, 0.0 -0.479 360.0 360.0 -72.0 81.3 -19.6 -14.2 5.7 39 39 A E 0 0 243 -2,-2.1 -1,-0.2 -3,-0.1 0, 0.0 0.094 360.0 360.0-105.2 360.0 -21.9 -12.0 7.8