==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ISOMERASE 09-JUN-10 2KYX . COMPND 2 MOLECULE: PEPTIDYL-PROLYL CIS-TRANS ISOMERASE E; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR S.PARK,J.H.BUSHWELLER . 83 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5746.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 54.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 20 24.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 4.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 19.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 -2 A G 0 0 122 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 140.0 -1.5 19.0 10.9 2 -1 A S + 0 0 120 1,-0.0 0, 0.0 0, 0.0 0, 0.0 0.961 360.0 172.2 58.3 90.9 -2.1 19.7 7.2 3 3 A T - 0 0 51 2,-0.1 79,-0.0 78,-0.0 -1,-0.0 0.903 5.1-179.4 -92.3 -56.2 -0.6 16.8 5.3 4 4 A T + 0 0 128 1,-0.1 2,-0.2 2,-0.0 53,-0.0 0.968 34.2 124.8 50.7 70.2 -1.8 17.4 1.7 5 5 A K - 0 0 85 52,-0.1 -1,-0.1 77,-0.1 55,-0.1 -0.726 59.2-138.6-139.6-171.5 -0.2 14.4 -0.1 6 6 A R + 0 0 105 -2,-0.2 48,-0.5 54,-0.1 2,-0.5 0.374 66.4 108.0-133.5 -5.0 -1.0 11.4 -2.3 7 7 A V - 0 0 25 46,-0.2 75,-3.1 75,-0.1 2,-0.3 -0.682 49.9-169.4 -83.0 124.1 1.1 8.7 -0.7 8 8 A L E -AB 52 81A 0 44,-4.0 44,-2.9 -2,-0.5 2,-0.4 -0.748 15.2-132.2-113.0 160.9 -0.9 6.1 1.2 9 9 A Y E -AB 51 80A 80 71,-2.2 71,-0.8 -2,-0.3 2,-0.5 -0.926 11.2-149.4-114.9 136.9 -0.1 3.3 3.5 10 10 A V E -AB 50 79A 0 40,-2.7 40,-1.0 -2,-0.4 2,-0.5 -0.911 15.8-177.6-108.4 123.6 -1.5 -0.3 3.3 11 11 A G E +AB 49 78A 14 67,-2.9 67,-1.9 -2,-0.5 38,-0.2 -0.951 59.3 38.9-127.1 116.6 -1.9 -2.3 6.5 12 12 A G S S+ 0 0 24 36,-1.0 60,-0.2 -2,-0.5 -1,-0.2 0.682 75.7 148.5 119.2 41.3 -3.1 -5.8 6.7 13 13 A L - 0 0 24 35,-2.0 2,-0.2 -3,-0.2 63,-0.1 -0.279 31.4-144.2 -95.0-176.9 -1.5 -7.5 3.7 14 14 A A > - 0 0 20 -2,-0.1 3,-0.6 61,-0.1 -1,-0.1 -0.659 39.7 -87.2-133.6-171.9 -0.3 -11.0 2.9 15 15 A E T 3 S+ 0 0 197 -2,-0.2 33,-0.1 1,-0.2 -2,-0.0 0.380 120.3 64.4 -83.3 4.2 2.5 -12.7 1.0 16 16 A E T 3 S+ 0 0 111 57,-0.1 2,-0.3 2,-0.0 -1,-0.2 0.650 86.2 82.1 -99.0 -21.3 0.4 -12.5 -2.1 17 17 A V < + 0 0 11 -3,-0.6 2,-0.2 55,-0.1 -4,-0.0 -0.629 51.5 151.5 -90.3 146.6 0.1 -8.7 -2.5 18 18 A D > - 0 0 86 -2,-0.3 4,-3.1 32,-0.0 5,-0.2 -0.856 62.3 -77.9-153.1-174.7 2.8 -6.6 -4.1 19 19 A D H > S+ 0 0 40 -2,-0.2 4,-2.2 1,-0.2 5,-0.1 0.819 127.2 58.4 -64.4 -30.1 3.3 -3.3 -6.0 20 20 A K H > S+ 0 0 149 2,-0.2 4,-1.9 1,-0.2 -1,-0.2 0.935 112.7 36.2 -64.7 -48.6 2.0 -5.1 -9.0 21 21 A V H > S+ 0 0 40 2,-0.2 4,-4.2 1,-0.2 5,-0.3 0.904 116.8 53.2 -71.6 -41.8 -1.4 -6.0 -7.4 22 22 A L H X S+ 0 0 0 -4,-3.1 4,-2.9 2,-0.2 5,-0.2 0.872 107.0 54.9 -60.5 -35.6 -1.5 -2.7 -5.5 23 23 A H H X S+ 0 0 70 -4,-2.2 4,-1.2 -5,-0.2 9,-0.4 0.973 117.2 33.4 -60.3 -56.1 -1.0 -1.1 -8.9 24 24 A A H < S+ 0 0 69 -4,-1.9 -2,-0.2 2,-0.2 -1,-0.2 0.864 122.6 48.3 -67.6 -40.3 -4.0 -2.8 -10.5 25 25 A A H < S+ 0 0 22 -4,-4.2 4,-0.4 1,-0.2 -3,-0.2 0.856 121.2 34.6 -70.6 -37.8 -6.0 -2.9 -7.2 26 26 A F H X S+ 0 0 0 -4,-2.9 4,-1.3 -5,-0.3 -2,-0.2 0.544 98.5 82.6 -95.5 -8.0 -5.4 0.8 -6.4 27 27 A I T < S+ 0 0 69 -4,-1.2 -2,-0.2 -5,-0.2 -1,-0.2 0.891 88.7 53.9 -63.3 -39.2 -5.4 2.0 -10.1 28 28 A P T 4 S+ 0 0 89 0, 0.0 -1,-0.2 0, 0.0 3,-0.2 0.905 112.0 44.4 -61.8 -39.9 -9.3 2.2 -10.1 29 29 A F T 4 S- 0 0 32 -4,-0.4 34,-0.3 1,-0.3 33,-0.3 0.731 142.5 -25.4 -74.4 -22.9 -9.3 4.4 -7.1 30 30 A G S < S- 0 0 1 -4,-1.3 2,-0.7 32,-0.1 -1,-0.3 -0.641 71.7 -95.5 170.0 129.7 -6.4 6.3 -8.6 31 31 A D - 0 0 86 -2,-0.2 24,-2.2 -3,-0.2 25,-0.3 -0.393 49.0-135.3 -60.2 104.1 -3.7 5.8 -11.1 32 32 A I E -C 54 0A 17 -2,-0.7 22,-0.3 -9,-0.4 3,-0.1 -0.181 23.9-174.6 -59.4 152.1 -0.7 4.9 -8.9 33 33 A T E + 0 0 58 20,-3.1 2,-0.3 1,-0.4 21,-0.2 0.620 66.9 10.7-119.5 -31.8 2.6 6.5 -9.6 34 34 A D E -C 53 0A 98 19,-0.9 19,-2.6 2,-0.0 -1,-0.4 -0.994 51.6-171.0-153.9 146.3 4.9 4.8 -7.2 35 35 A I E -C 52 0A 22 -2,-0.3 2,-0.4 17,-0.2 17,-0.2 -0.959 9.8-175.8-142.0 118.5 4.9 1.9 -4.8 36 36 A Q E -C 51 0A 124 15,-1.1 15,-1.5 -2,-0.4 -2,-0.0 -0.963 7.5-172.2-121.4 130.5 7.7 1.2 -2.2 37 37 A I - 0 0 39 -2,-0.4 13,-0.1 13,-0.2 2,-0.1 -0.942 17.0-149.6-121.5 108.2 8.0 -1.8 0.1 38 38 A P - 0 0 53 0, 0.0 2,-0.3 0, 0.0 11,-0.2 -0.383 14.1-169.5 -76.7 154.6 10.8 -1.6 2.7 39 39 A L - 0 0 105 7,-0.1 7,-0.1 -2,-0.1 2,-0.0 -0.881 21.4-102.6-138.0 168.6 12.6 -4.7 4.1 40 40 A D - 0 0 59 -2,-0.3 6,-0.1 1,-0.1 -1,-0.1 -0.165 17.3-134.3 -83.5-178.9 15.1 -5.6 6.8 41 41 A Y S S+ 0 0 207 2,-0.1 -1,-0.1 3,-0.1 0, 0.0 0.696 103.3 40.0-107.7 -30.8 18.8 -6.2 6.5 42 42 A E S S+ 0 0 168 3,-0.1 -2,-0.0 1,-0.0 0, 0.0 0.788 139.4 14.1 -87.2 -32.9 19.1 -9.4 8.7 43 43 A T S S- 0 0 61 2,-0.1 -2,-0.1 0, 0.0 3,-0.1 0.601 80.8-156.7-114.6 -23.3 15.9 -11.0 7.4 44 44 A E + 0 0 147 1,-0.1 2,-0.4 -5,-0.0 -3,-0.1 0.814 56.6 116.3 45.9 36.2 15.2 -8.8 4.3 45 45 A K - 0 0 137 0, 0.0 -1,-0.1 0, 0.0 -6,-0.1 -0.968 54.8-147.9-138.6 120.9 11.5 -9.7 4.6 46 46 A H - 0 0 58 -2,-0.4 -7,-0.1 1,-0.1 4,-0.1 0.126 16.3-128.1 -68.4-168.4 8.6 -7.4 5.3 47 47 A R - 0 0 189 2,-0.1 -1,-0.1 -33,-0.0 -8,-0.0 0.742 67.7 -64.0-110.5 -47.8 5.5 -8.4 7.3 48 48 A G S S+ 0 0 8 1,-0.1 -35,-2.0 -38,-0.1 -36,-1.0 0.300 93.6 109.7 159.3 45.7 2.7 -7.3 5.0 49 49 A F E +A 11 0A 70 -11,-0.2 2,-0.3 -38,-0.2 -38,-0.2 -0.978 30.5 164.8-139.2 151.5 2.7 -3.5 4.5 50 50 A A E -A 10 0A 2 -40,-1.0 -40,-2.7 -2,-0.3 2,-0.4 -0.928 32.3-107.8-154.0 176.7 3.5 -1.1 1.7 51 51 A F E -AC 9 36A 74 -15,-1.5 -15,-1.1 -2,-0.3 2,-0.5 -0.961 23.6-159.3-118.4 129.3 3.2 2.5 0.4 52 52 A V E -AC 8 35A 0 -44,-2.9 -44,-4.0 -2,-0.4 2,-0.4 -0.919 5.3-164.9-111.4 129.4 0.9 3.5 -2.5 53 53 A E E - C 0 34A 52 -19,-2.6 -20,-3.1 -2,-0.5 -19,-0.9 -0.913 5.9-157.8-114.1 137.9 1.5 6.7 -4.5 54 54 A F E - C 0 32A 1 -48,-0.5 -22,-0.2 -2,-0.4 -23,-0.1 -0.789 23.9-135.8-114.6 158.5 -1.0 8.3 -6.8 55 55 A E S S+ 0 0 133 -24,-2.2 2,-0.5 -2,-0.3 -23,-0.1 0.819 98.1 50.0 -76.8 -33.1 -0.8 10.7 -9.7 56 56 A L S > S- 0 0 97 -25,-0.3 4,-1.3 1,-0.1 3,-0.3 -0.936 72.3-149.6-113.0 124.6 -3.7 12.7 -8.4 57 57 A A H > S+ 0 0 55 -2,-0.5 4,-0.9 1,-0.2 3,-0.4 0.898 102.7 49.4 -56.1 -43.4 -3.9 13.8 -4.8 58 58 A E H > S+ 0 0 177 1,-0.2 4,-0.8 2,-0.2 -1,-0.2 0.820 102.3 63.8 -66.4 -30.5 -7.7 13.6 -4.7 59 59 A D H >> S+ 0 0 41 -3,-0.3 4,-1.5 1,-0.2 3,-0.8 0.868 95.3 59.0 -61.1 -37.8 -7.4 10.1 -6.2 60 60 A A H 3X S+ 0 0 0 -4,-1.3 4,-3.3 -3,-0.4 -1,-0.2 0.901 95.5 62.3 -58.9 -41.8 -5.7 8.9 -3.1 61 61 A A H 3X S+ 0 0 41 -4,-0.9 4,-3.0 1,-0.2 -1,-0.3 0.841 102.4 52.6 -53.0 -34.1 -8.6 9.9 -1.0 62 62 A A H S+ 0 0 0 -4,-1.5 4,-3.7 -34,-0.3 5,-0.5 0.893 115.1 51.2 -62.6 -37.8 -8.1 4.6 -2.2 64 64 A I H X5S+ 0 0 28 -4,-3.3 4,-1.1 1,-0.2 15,-0.3 0.933 116.2 37.8 -62.7 -50.9 -8.2 5.9 1.3 65 65 A D H <5S+ 0 0 135 -4,-3.0 -1,-0.2 -5,-0.2 -2,-0.2 0.572 126.4 40.5 -79.6 -10.3 -12.0 5.8 1.6 66 66 A N H <5S+ 0 0 92 -4,-1.5 -2,-0.2 -5,-0.2 -3,-0.2 0.812 120.9 35.9-104.4 -45.0 -12.2 2.6 -0.5 67 67 A M H ><5S+ 0 0 10 -4,-3.7 3,-1.9 -5,-0.3 2,-0.4 0.705 88.2 109.5 -83.6 -20.5 -9.3 0.4 0.7 68 68 A N T 3< S-D 75 0B 28 3,-3.7 3,-1.5 -2,-0.4 -55,-0.1 -0.983 73.8 -13.9-137.1 123.2 -7.8 -7.9 -0.3 73 73 A F T 3 S- 0 0 91 -2,-0.4 3,-0.1 1,-0.3 -1,-0.1 0.852 129.7 -54.5 56.0 34.3 -6.7 -11.5 -1.1 74 74 A G T 3 S+ 0 0 56 1,-0.3 2,-0.4 -60,-0.0 -1,-0.3 0.708 119.9 114.2 72.6 19.6 -9.0 -12.6 1.8 75 75 A R E < -D 72 0B 123 -3,-1.5 -3,-3.7 -61,-0.0 2,-0.6 -0.949 69.5-120.9-125.6 145.4 -7.2 -10.1 4.1 76 76 A T E -D 71 0B 83 -2,-0.4 2,-0.3 -5,-0.2 -5,-0.2 -0.734 34.9-169.0 -86.3 119.8 -8.4 -7.0 5.8 77 77 A I E -D 70 0B 0 -7,-1.2 -8,-1.4 -2,-0.6 -7,-1.4 -0.816 11.1-155.3-112.3 152.6 -6.3 -4.0 4.8 78 78 A R E -B 11 0A 168 -67,-1.9 -67,-2.9 -2,-0.3 2,-0.3 -0.982 9.5-165.9-126.6 135.2 -6.1 -0.5 6.2 79 79 A V E +B 10 0A 4 -2,-0.4 2,-0.3 -15,-0.3 -69,-0.2 -0.913 11.5 165.0-123.5 150.6 -5.0 2.6 4.3 80 80 A N E -B 9 0A 91 -71,-0.8 -71,-2.2 -2,-0.3 2,-0.4 -0.988 42.6 -91.4-157.9 156.9 -4.0 6.1 5.4 81 81 A L E -B 8 0A 42 -2,-0.3 -73,-0.2 -73,-0.2 -77,-0.0 -0.606 45.6-129.8 -76.5 123.4 -2.4 9.3 4.1 82 82 A A 0 0 16 -75,-3.1 -77,-0.1 -2,-0.4 -1,-0.1 0.011 360.0 360.0 -62.7 175.7 1.4 9.3 4.8 83 83 A K 0 0 175 -79,-0.0 -1,-0.1 -78,-0.0 -2,-0.0 0.128 360.0 360.0-163.3 360.0 3.2 12.2 6.5