==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=15-MAR-2013 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 09-JUN-10 2KYZ . COMPND 2 MOLECULE: HEAVY METAL BINDING PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: THERMOTOGA MARITIMA; . AUTHOR K.JAUDZEMS,A.WAHAB,P.SERRANO,M.GERALT,K.WUTHRICH,I.A.WILSON, . 67 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4704.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 50 74.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 16 23.9 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 11.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 19 28.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 4.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 113 0, 0.0 43,-2.4 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 164.3 13.3 3.1 2.3 2 2 A R E -A 43 0A 122 65,-0.5 65,-2.2 41,-0.3 2,-0.4 -0.936 360.0-172.1-123.7 143.7 9.7 4.3 2.9 3 3 A Y E -AB 42 66A 32 39,-2.5 39,-1.8 -2,-0.4 2,-1.0 -0.994 22.9-138.5-142.5 134.1 7.1 5.5 0.3 4 4 A V E -A 41 0A 23 61,-3.0 37,-0.3 -2,-0.4 2,-0.1 -0.804 29.1-163.3 -95.3 90.4 3.6 7.1 0.6 5 5 A L E -A 40 0A 0 35,-2.6 35,-1.4 -2,-1.0 2,-0.5 -0.344 14.6-135.5 -64.9 158.9 1.6 5.2 -2.1 6 6 A Y E +AC 39 63A 95 57,-2.3 56,-2.7 33,-0.2 57,-0.5 -0.953 27.9 174.1-122.5 104.3 -1.8 6.8 -3.3 7 7 A V > - 0 0 0 31,-1.8 3,-2.1 -2,-0.5 54,-0.1 -0.829 11.3-179.3-118.5 83.8 -4.3 4.0 -3.4 8 8 A P G > S+ 0 0 54 0, 0.0 3,-0.5 0, 0.0 -1,-0.1 0.735 77.1 75.4 -59.3 -21.0 -7.8 5.5 -4.2 9 9 A D G > S+ 0 0 62 1,-0.3 3,-0.7 51,-0.3 2,-0.4 0.715 77.7 77.6 -64.2 -18.0 -9.3 1.9 -4.1 10 10 A I G < + 0 0 0 -3,-2.1 28,-0.4 1,-0.2 -1,-0.3 -0.088 54.5 118.5 -81.1 36.0 -9.0 2.3 -0.3 11 11 A S G < S+ 0 0 82 -3,-0.5 2,-0.3 -2,-0.4 -1,-0.2 0.713 71.8 55.3 -71.3 -15.6 -12.1 4.5 -0.3 12 12 A C S <> S- 0 0 77 -3,-0.7 4,-1.1 1,-0.1 24,-0.0 -0.815 84.8-120.5-123.7 159.6 -13.7 1.8 1.9 13 13 A N H > S+ 0 0 136 -2,-0.3 4,-0.8 1,-0.2 3,-0.4 0.890 113.2 52.0 -66.3 -43.1 -13.0 0.1 5.3 14 14 A H H >> S+ 0 0 113 1,-0.2 4,-1.0 2,-0.2 3,-0.6 0.909 103.4 60.6 -58.4 -40.1 -12.8 -3.5 3.8 15 15 A C H >> S+ 0 0 20 1,-0.2 4,-1.2 2,-0.2 3,-0.6 0.859 91.6 67.8 -57.5 -36.5 -10.3 -2.2 1.2 16 16 A K H 3X S+ 0 0 73 -4,-1.1 4,-1.4 -3,-0.4 3,-0.4 0.912 102.6 45.8 -47.0 -50.9 -8.0 -1.2 4.2 17 17 A M H S+ 0 0 0 -4,-2.0 4,-2.3 -3,-0.3 5,-2.1 0.894 109.6 49.5 -73.3 -46.4 1.7 -6.6 2.6 24 24 A E H <5S+ 0 0 116 -4,-3.0 -2,-0.2 2,-0.2 -3,-0.2 0.920 116.2 42.8 -56.9 -44.1 2.1 -9.1 5.5 25 25 A E H <5S+ 0 0 174 -4,-2.3 -2,-0.2 -5,-0.3 -1,-0.2 0.804 109.5 57.3 -79.3 -25.6 2.4 -12.0 3.0 26 26 A L H <5S- 0 0 41 -4,-1.4 -2,-0.2 -5,-0.2 -1,-0.2 0.911 117.7-119.5 -60.8 -40.9 4.7 -9.8 0.8 27 27 A G T <5 + 0 0 51 -4,-2.3 -3,-0.2 1,-0.2 -2,-0.1 0.671 53.1 160.7 100.8 26.1 6.9 -9.5 3.9 28 28 A V < - 0 0 5 -5,-2.1 -1,-0.2 1,-0.1 16,-0.1 -0.379 22.9-163.7 -58.2 158.8 6.9 -5.8 4.6 29 29 A K S S+ 0 0 167 14,-0.9 2,-0.4 1,-0.4 -1,-0.1 0.562 72.2 33.8-124.9 -11.0 7.9 -5.0 8.2 30 30 A N E S+D 43 0A 89 13,-0.8 13,-2.4 2,-0.0 -1,-0.4 -0.981 76.0 127.9-143.8 126.7 6.8 -1.3 8.6 31 31 A Y E -D 42 0A 63 -2,-0.4 2,-0.3 11,-0.3 11,-0.2 -0.967 31.6-158.1-164.0 164.3 3.6 0.0 6.9 32 32 A E E -D 41 0A 132 9,-2.4 9,-2.5 -2,-0.3 2,-0.3 -0.957 8.0-153.1-150.9 147.9 0.4 1.9 7.5 33 33 A V E -D 40 0A 12 -2,-0.3 2,-0.4 7,-0.2 7,-0.2 -0.885 6.4-164.1-117.9 149.5 -2.9 2.0 5.6 34 34 A S E > +D 39 0A 20 5,-2.7 5,-1.9 -2,-0.3 4,-0.1 -0.990 19.2 178.3-136.1 122.6 -5.4 4.9 5.5 35 35 A V T 5S+ 0 0 29 -2,-0.4 3,-0.1 3,-0.2 -1,-0.1 0.768 88.8 60.7 -85.5 -31.0 -9.0 4.7 4.3 36 36 A E T 5S+ 0 0 142 1,-0.2 -1,-0.1 2,-0.1 -2,-0.0 0.952 122.2 20.9 -55.6 -52.7 -9.5 8.4 5.3 37 37 A E T 5S- 0 0 117 2,-0.1 -1,-0.2 -30,-0.0 -2,-0.2 0.296 102.4-122.7-106.3 7.4 -6.7 9.6 2.9 38 38 A K T 5 + 0 0 67 -28,-0.4 -31,-1.8 1,-0.2 2,-0.3 0.943 69.2 132.3 52.9 54.8 -6.7 6.6 0.5 39 39 A K E < -AD 6 34A 56 -5,-1.9 -5,-2.7 -33,-0.2 2,-0.3 -0.907 44.5-164.6-141.7 154.4 -3.0 6.1 1.3 40 40 A V E -AD 5 33A 0 -35,-1.4 -35,-2.6 -2,-0.3 2,-0.5 -0.964 6.4-159.5-141.6 126.6 -0.4 3.5 2.2 41 41 A V E -AD 4 32A 38 -9,-2.5 -9,-2.4 -2,-0.3 2,-0.3 -0.921 14.6-176.4 -92.1 139.4 3.0 3.9 3.6 42 42 A V E -AD 3 31A 0 -39,-1.8 -39,-2.5 -2,-0.5 2,-0.5 -0.948 15.8-157.8-120.5 150.7 5.3 1.0 3.2 43 43 A E E +AD 2 30A 77 -13,-2.4 -14,-0.9 -2,-0.3 -13,-0.8 -0.973 44.1 126.9-123.0 100.3 8.9 0.8 4.5 44 44 A T - 0 0 34 -43,-2.4 3,-0.3 -2,-0.5 -16,-0.1 -0.955 65.3-120.7-150.2 174.7 10.7 -1.8 2.4 45 45 A E S S+ 0 0 179 -2,-0.3 2,-0.3 1,-0.2 3,-0.1 0.601 105.7 44.4-103.3 -10.9 13.9 -2.4 0.3 46 46 A N > + 0 0 89 1,-0.1 4,-0.8 -45,-0.1 3,-0.4 -0.722 57.5 173.5-133.1 87.8 11.9 -3.3 -3.0 47 47 A L H >> S+ 0 0 16 -2,-0.3 4,-2.4 -3,-0.3 3,-0.6 0.813 79.0 67.8 -49.4 -38.2 9.1 -0.8 -3.5 48 48 A D H 3> S+ 0 0 99 1,-0.3 4,-2.9 2,-0.2 5,-0.2 0.947 95.0 54.4 -53.6 -50.7 8.5 -2.6 -6.9 49 49 A S H 3> S+ 0 0 53 -3,-0.4 4,-2.2 1,-0.2 -1,-0.3 0.803 110.8 46.9 -51.6 -38.0 7.4 -5.8 -5.2 50 50 A V H <>S+ 0 0 0 -4,-2.7 5,-2.4 2,-0.2 3,-1.2 0.931 110.8 43.5 -58.2 -50.2 -1.0 -3.7 -5.3 55 55 A E H ><5S+ 0 0 121 -4,-2.0 3,-2.4 1,-0.3 -2,-0.2 0.935 110.4 57.2 -61.1 -44.2 -1.9 -4.2 -9.0 56 56 A E T 3<5S+ 0 0 146 -4,-2.8 -1,-0.3 1,-0.3 -2,-0.2 0.468 102.5 54.1 -72.5 -0.4 -2.2 -8.0 -8.4 57 57 A I T < 5S- 0 0 35 -3,-1.2 -1,-0.3 -4,-0.3 -2,-0.2 0.242 126.2-103.7-105.5 13.4 -4.9 -7.3 -5.7 58 58 A D T < 5S+ 0 0 131 -3,-2.4 -3,-0.2 -5,-0.1 -2,-0.2 0.536 90.6 119.2 76.6 15.3 -6.8 -5.3 -8.4 59 59 A Y < - 0 0 11 -5,-2.4 2,-0.3 -6,-0.2 -3,-0.1 -0.756 48.0-164.6-115.3 80.1 -5.7 -2.0 -6.7 60 60 A P - 0 0 78 0, 0.0 -51,-0.3 0, 0.0 2,-0.2 -0.518 19.7-132.2 -66.9 122.8 -3.6 0.1 -9.3 61 61 A V - 0 0 36 -2,-0.3 -54,-0.2 -10,-0.3 3,-0.1 -0.505 5.4-149.1 -71.7 144.3 -1.7 2.8 -7.4 62 62 A E - 0 0 133 -56,-2.7 2,-0.3 1,-0.4 -1,-0.1 0.940 69.2 -42.5 -76.2 -53.7 -2.0 6.4 -8.8 63 63 A S B -C 6 0A 70 -57,-0.5 -57,-2.3 -59,-0.0 -1,-0.4 -0.933 51.4-146.4-159.6 177.6 1.6 7.4 -7.6 64 64 A Y - 0 0 120 -59,-0.3 2,-0.3 -2,-0.3 -59,-0.2 -0.846 6.5-160.5-140.2 177.5 3.9 7.2 -4.6 65 65 A Q - 0 0 126 -2,-0.3 -61,-3.0 -61,-0.0 2,-0.1 -0.906 24.8-110.7-161.5 140.9 6.6 9.4 -3.1 66 66 A E B B 3 0A 117 -2,-0.3 -63,-0.3 -63,-0.3 -2,-0.0 -0.452 360.0 360.0 -69.3 145.7 9.6 8.8 -0.7 67 67 A V 0 0 98 -65,-2.2 -65,-0.5 -2,-0.1 -1,-0.0 -0.538 360.0 360.0-135.4 360.0 9.5 10.1 2.9