==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-SEP-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 07-DEC-09 3KYU . COMPND 2 MOLECULE: RUBREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: PYROCOCCUS FURIOSUS; . AUTHOR A.S.GARDBERG . 54 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3504.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 33 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 22.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 13.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 7.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 0 A M 0 0 95 0, 0.0 15,-0.1 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0-175.9 23.0 -4.1 4.8 2 1 A A - 0 0 23 12,-0.1 13,-2.5 13,-0.1 2,-0.4 -0.370 360.0-144.2 -88.2 163.7 21.3 -1.8 2.3 3 2 A K E -A 14 0A 67 49,-0.3 49,-3.2 11,-0.2 2,-0.4 -0.951 11.5-164.8-124.1 144.0 20.1 1.8 2.6 4 3 A W E -AB 13 51A 24 9,-2.4 9,-2.8 -2,-0.4 2,-0.4 -0.964 10.9-139.6-128.2 140.8 17.0 3.2 1.0 5 4 A V E -AB 12 50A 38 45,-2.7 45,-2.2 -2,-0.4 2,-0.7 -0.864 15.0-127.8-104.0 138.8 16.1 6.8 0.5 6 5 A C E > - B 0 49A 1 5,-2.9 4,-2.2 -2,-0.4 43,-0.2 -0.728 19.4-151.7 -74.2 114.5 12.6 8.3 0.9 7 6 A K T 4 S+ 0 0 111 41,-2.9 -1,-0.2 -2,-0.7 42,-0.1 0.731 89.7 52.4 -64.7 -21.7 12.3 10.2 -2.4 8 7 A I T 4 S+ 0 0 134 40,-0.3 -1,-0.2 3,-0.1 41,-0.1 0.949 128.5 6.0 -78.4 -53.7 10.0 12.7 -0.8 9 8 A C T 4 S- 0 0 48 2,-0.1 -2,-0.2 35,-0.0 -1,-0.1 0.525 92.5-112.4-117.8 -10.3 11.9 13.9 2.3 10 9 A G < + 0 0 36 -4,-2.2 -3,-0.1 1,-0.3 2,-0.0 0.403 58.7 152.6 89.0 -1.5 15.4 12.4 2.2 11 10 A Y - 0 0 40 -6,-0.1 -5,-2.9 -5,-0.1 2,-0.6 -0.349 39.2-136.3 -55.2 140.8 15.0 10.1 5.2 12 11 A I E -A 5 0A 94 -7,-0.2 2,-0.9 37,-0.1 -7,-0.2 -0.906 5.3-151.8-104.3 116.8 17.3 7.1 5.0 13 12 A Y E -A 4 0A 0 -9,-2.8 -9,-2.4 -2,-0.6 2,-0.7 -0.808 19.1-166.5 -82.3 108.3 15.9 3.7 5.8 14 13 A D E >> -A 3 0A 45 -2,-0.9 4,-2.0 4,-0.4 3,-1.5 -0.897 15.1-152.0 -99.5 111.2 19.1 2.0 7.0 15 14 A E T 34 S+ 0 0 6 -13,-2.5 12,-2.6 -2,-0.7 13,-0.4 0.834 96.9 57.3 -54.0 -33.2 18.5 -1.8 7.2 16 15 A D T 34 S+ 0 0 80 -14,-0.3 -1,-0.3 1,-0.2 -13,-0.1 0.740 113.4 39.4 -67.6 -26.8 21.2 -2.0 9.9 17 16 A A T <4 S- 0 0 49 -3,-1.5 -2,-0.2 1,-0.2 -1,-0.2 0.696 87.3-172.8 -89.2 -27.0 19.2 0.6 12.0 18 17 A G < - 0 0 3 -4,-2.0 -4,-0.4 10,-0.2 7,-0.2 -0.329 40.7 -88.0 58.1-148.6 15.7 -0.6 11.4 19 18 A D B > > +C 24 0B 10 5,-2.1 5,-2.0 -6,-0.1 3,-1.9 -0.470 51.3 169.1-155.4 65.5 13.0 1.7 12.8 20 19 A P G > 5S+ 0 0 81 0, 0.0 3,-1.6 0, 0.0 5,-0.1 0.813 72.9 64.0 -64.3 -29.5 12.5 0.5 16.4 21 20 A D G 3 5S+ 0 0 149 1,-0.3 4,-0.1 2,-0.1 -2,-0.0 0.735 111.2 40.8 -62.7 -21.0 10.4 3.5 17.4 22 21 A N G < 5S- 0 0 102 -3,-1.9 -1,-0.3 2,-0.2 3,-0.1 0.013 131.9 -86.3-119.3 25.7 7.8 2.2 14.8 23 22 A G T < 5S+ 0 0 63 -3,-1.6 2,-0.5 1,-0.2 -2,-0.1 0.635 88.5 121.5 88.7 19.8 8.1 -1.5 15.5 24 23 A I B < -C 19 0B 22 -5,-2.0 -5,-2.1 -7,-0.1 -1,-0.2 -0.942 51.3-142.0-124.2 113.4 11.0 -2.5 13.3 25 24 A S > - 0 0 75 -2,-0.5 3,-1.4 -7,-0.2 -7,-0.1 -0.359 35.9 -88.4 -70.3 150.8 14.1 -4.2 14.8 26 25 A P T 3 S+ 0 0 84 0, 0.0 -10,-0.2 0, 0.0 -9,-0.2 -0.308 113.8 38.0 -54.4 137.7 17.6 -3.4 13.5 27 26 A G T 3 S+ 0 0 36 -12,-2.6 2,-0.5 1,-0.3 -11,-0.2 0.364 76.9 141.1 96.7 2.4 18.5 -5.7 10.6 28 27 A T < - 0 0 30 -3,-1.4 -1,-0.3 -13,-0.4 -10,-0.2 -0.614 49.6-130.2 -81.6 119.0 15.1 -5.8 8.9 29 28 A K >> - 0 0 117 -2,-0.5 3,-1.4 1,-0.1 4,-0.6 -0.386 20.0-116.0 -64.3 150.3 15.4 -5.7 5.1 30 29 A F G >4 S+ 0 0 14 1,-0.3 3,-1.5 2,-0.2 -1,-0.1 0.873 115.1 59.5 -56.1 -41.6 13.2 -3.1 3.4 31 30 A E G 34 S+ 0 0 101 1,-0.3 -1,-0.3 4,-0.0 -3,-0.0 0.806 103.2 53.5 -56.3 -33.2 11.2 -5.9 1.6 32 31 A E G <4 S+ 0 0 136 -3,-1.4 -1,-0.3 2,-0.1 -2,-0.2 0.503 78.9 110.5 -85.3 -7.5 10.2 -7.2 5.0 33 32 A L S << S- 0 0 2 -3,-1.5 -9,-0.0 -4,-0.6 13,-0.0 -0.453 87.6 -92.8 -59.9 139.1 8.8 -4.0 6.3 34 33 A P > - 0 0 60 0, 0.0 3,-2.3 0, 0.0 12,-0.1 -0.185 34.2-111.4 -51.7 150.4 5.0 -4.4 6.6 35 34 A D T 3 S+ 0 0 152 1,-0.3 11,-0.4 -3,-0.1 -2,-0.1 0.789 118.4 47.0 -55.9 -31.9 3.2 -3.3 3.5 36 35 A D T 3 S+ 0 0 131 9,-0.1 -1,-0.3 10,-0.1 2,-0.1 0.226 80.5 123.0 -97.4 9.1 1.7 -0.4 5.4 37 36 A W < - 0 0 15 -3,-2.3 9,-0.7 1,-0.0 2,-0.3 -0.492 45.6-165.0 -61.3 143.3 4.9 0.8 7.0 38 37 A V B -D 45 0C 90 7,-0.2 6,-0.1 -2,-0.1 -2,-0.1 -0.894 32.2 -77.5-130.6 161.7 5.5 4.4 6.1 39 38 A C > - 0 0 1 5,-2.8 4,-1.8 -2,-0.3 7,-0.0 -0.350 39.6-140.1 -53.1 128.1 8.4 6.9 6.2 40 39 A P T 4 S+ 0 0 34 0, 0.0 -1,-0.2 0, 0.0 -21,-0.0 0.649 96.8 44.5 -70.3 -16.0 8.7 7.9 9.9 41 40 A I T 4 S+ 0 0 151 3,-0.1 -2,-0.0 0, 0.0 -3,-0.0 0.903 132.0 8.9 -90.7 -57.4 9.3 11.5 8.8 42 41 A C T 4 S- 0 0 50 2,-0.1 -3,-0.0 -31,-0.0 0, 0.0 0.528 91.9-117.8-109.6 -8.7 6.9 12.4 6.1 43 42 A G < + 0 0 33 -4,-1.8 0, 0.0 1,-0.2 0, 0.0 0.516 54.0 159.6 84.0 6.6 4.5 9.4 6.0 44 43 A A - 0 0 6 -6,-0.1 -5,-2.8 1,-0.1 -1,-0.2 -0.322 40.5-114.4 -63.9 142.9 5.3 8.3 2.4 45 44 A P B > -D 38 0C 65 0, 0.0 3,-2.4 0, 0.0 -7,-0.2 -0.220 32.8 -95.7 -70.5 169.2 4.4 4.7 1.6 46 45 A K G > S+ 0 0 32 -9,-0.7 3,-1.9 -11,-0.4 -8,-0.1 0.801 118.9 71.9 -55.4 -32.1 7.0 2.1 0.7 47 46 A S G 3 S+ 0 0 80 1,-0.3 -1,-0.3 3,-0.0 -3,-0.0 0.703 89.4 62.0 -55.1 -25.4 6.5 2.8 -3.0 48 47 A E G < S+ 0 0 55 -3,-2.4 -41,-2.9 2,-0.0 2,-0.3 0.339 85.0 96.4 -91.2 8.7 8.3 6.1 -2.6 49 48 A F E < -B 6 0A 15 -3,-1.9 2,-0.4 -43,-0.2 -43,-0.2 -0.742 55.1-160.3 -99.5 147.4 11.6 4.6 -1.4 50 49 A E E -B 5 0A 102 -45,-2.2 -45,-2.7 -2,-0.3 2,-0.3 -0.985 23.2-118.6-126.5 132.6 14.6 3.9 -3.7 51 50 A K E -B 4 0A 68 -2,-0.4 2,-1.8 -47,-0.2 -47,-0.3 -0.521 25.2-127.1 -72.7 133.4 17.4 1.5 -2.9 52 51 A L S S+ 0 0 100 -49,-3.2 2,-0.3 -2,-0.3 -49,-0.3 -0.542 73.5 90.9 -87.8 80.0 20.8 3.2 -2.7 53 52 A E 0 0 130 -2,-1.8 -2,-0.0 -51,-0.1 -51,-0.0 -0.971 360.0 360.0-158.5 159.1 22.8 1.1 -5.1 54 53 A D 0 0 218 -2,-0.3 -2,-0.0 0, 0.0 -3,-0.0 -0.515 360.0 360.0 -67.6 360.0 23.6 1.1 -8.8