==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-SEP-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ELECTRON TRANSPORT 07-DEC-09 3KYV . COMPND 2 MOLECULE: RUBREDOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: PYROCOCCUS FURIOSUS; . AUTHOR A.S.GARDBERG . 54 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3513.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 33 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 22.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 3 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 13.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 4 7.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 0 A M 0 0 99 0, 0.0 15,-0.1 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0-179.5 -6.0 4.1 4.7 2 1 A A - 0 0 23 12,-0.1 13,-2.6 13,-0.1 2,-0.4 -0.346 360.0-145.4 -84.6 159.7 -4.3 1.9 2.2 3 2 A K E -A 14 0A 64 49,-0.3 49,-3.1 11,-0.2 2,-0.4 -0.944 11.6-165.1-119.8 146.1 -3.1 -1.7 2.6 4 3 A W E -AB 13 51A 24 9,-2.3 9,-2.8 -2,-0.4 2,-0.4 -0.981 10.7-140.1-129.8 140.0 -0.0 -3.1 0.9 5 4 A V E -AB 12 50A 35 45,-2.7 45,-2.2 -2,-0.4 2,-0.7 -0.842 15.0-128.1-104.5 139.1 0.9 -6.8 0.5 6 5 A C E > - B 0 49A 1 5,-3.1 4,-2.2 -2,-0.4 43,-0.2 -0.717 19.2-152.6 -73.6 114.5 4.3 -8.3 0.8 7 6 A K T 4 S+ 0 0 115 41,-2.8 -1,-0.1 -2,-0.7 42,-0.1 0.559 89.1 53.8 -73.9 -5.9 4.6 -10.2 -2.4 8 7 A I T 4 S+ 0 0 135 40,-0.2 -1,-0.2 3,-0.1 41,-0.1 0.898 128.8 4.9 -84.9 -54.9 7.0 -12.7 -0.8 9 8 A C T 4 S- 0 0 49 2,-0.1 -2,-0.2 35,-0.0 -4,-0.0 0.534 93.2-112.3-116.3 -13.7 5.1 -13.9 2.3 10 9 A G < + 0 0 35 -4,-2.2 -3,-0.1 1,-0.3 2,-0.0 0.437 58.2 153.4 90.2 -1.8 1.6 -12.3 2.2 11 10 A Y - 0 0 42 -6,-0.1 -5,-3.1 -5,-0.1 2,-0.6 -0.359 38.8-135.9 -54.2 140.5 2.0 -10.0 5.2 12 11 A I E -A 5 0A 93 -7,-0.2 2,-0.9 37,-0.0 -7,-0.2 -0.917 5.9-152.5-104.8 115.1 -0.3 -7.0 4.9 13 12 A Y E -A 4 0A 0 -9,-2.8 -9,-2.3 -2,-0.6 2,-0.7 -0.832 18.9-167.3 -80.3 105.6 1.1 -3.6 5.8 14 13 A D E >> -A 3 0A 44 -2,-0.9 4,-2.1 4,-0.4 3,-1.7 -0.909 16.1-151.8 -98.0 112.6 -2.1 -1.9 6.9 15 14 A E T 34 S+ 0 0 7 -13,-2.6 12,-2.7 -2,-0.7 13,-0.4 0.824 97.0 58.1 -54.7 -33.3 -1.5 1.8 7.2 16 15 A D T 34 S+ 0 0 80 -14,-0.3 -1,-0.3 10,-0.2 -13,-0.1 0.734 113.7 37.9 -64.1 -29.6 -4.3 2.0 9.8 17 16 A A T <4 S- 0 0 50 -3,-1.7 -2,-0.2 1,-0.2 -1,-0.2 0.702 87.8-171.3 -91.3 -28.6 -2.3 -0.5 12.0 18 17 A G < - 0 0 3 -4,-2.1 -4,-0.4 10,-0.2 7,-0.2 -0.337 40.7 -86.9 63.2-151.2 1.2 0.6 11.4 19 18 A D B > > +C 24 0B 12 5,-2.1 5,-1.9 -6,-0.1 3,-1.8 -0.486 51.9 169.5-153.6 67.8 3.9 -1.7 12.8 20 19 A P G > 5S+ 0 0 81 0, 0.0 3,-1.7 0, 0.0 5,-0.1 0.827 72.7 63.4 -63.2 -33.3 4.4 -0.6 16.4 21 20 A D G 3 5S+ 0 0 146 1,-0.3 4,-0.1 2,-0.1 -2,-0.0 0.716 111.0 41.2 -61.9 -20.3 6.6 -3.5 17.4 22 21 A N G < 5S- 0 0 115 -3,-1.8 -1,-0.3 2,-0.2 3,-0.1 0.013 131.4 -85.2-120.4 26.3 9.1 -2.3 14.8 23 22 A G T < 5S+ 0 0 63 -3,-1.7 2,-0.5 1,-0.2 -2,-0.1 0.643 89.3 120.6 90.4 19.4 8.9 1.5 15.5 24 23 A I B < -C 19 0B 21 -5,-1.9 -5,-2.1 -7,-0.1 -1,-0.2 -0.935 50.9-143.9-125.0 112.8 5.9 2.5 13.3 25 24 A S > - 0 0 75 -2,-0.5 3,-1.4 -7,-0.2 -7,-0.1 -0.344 35.9 -88.0 -71.2 151.2 2.9 4.1 14.7 26 25 A P T 3 S+ 0 0 82 0, 0.0 -10,-0.2 0, 0.0 -9,-0.2 -0.286 114.2 37.6 -52.5 137.6 -0.6 3.4 13.4 27 26 A G T 3 S+ 0 0 37 -12,-2.7 2,-0.6 1,-0.3 -11,-0.2 0.424 76.9 140.9 95.7 2.7 -1.5 5.7 10.6 28 27 A T < - 0 0 30 -3,-1.4 -1,-0.3 -13,-0.4 -10,-0.2 -0.658 50.4-129.7 -81.0 119.7 1.9 5.8 9.0 29 28 A K >> - 0 0 119 -2,-0.6 3,-1.4 1,-0.1 4,-0.6 -0.368 18.9-116.6 -62.6 146.8 1.6 5.8 5.2 30 29 A F G >4 S+ 0 0 14 1,-0.3 3,-1.5 2,-0.2 -1,-0.1 0.884 115.5 59.0 -53.1 -42.8 3.8 3.2 3.4 31 30 A E G 34 S+ 0 0 104 1,-0.3 -1,-0.3 4,-0.0 -3,-0.0 0.805 103.0 54.7 -58.6 -28.2 5.7 6.0 1.6 32 31 A E G <4 S+ 0 0 137 -3,-1.4 -1,-0.3 2,-0.1 -2,-0.2 0.501 79.0 109.9 -85.2 -10.9 6.7 7.3 5.0 33 32 A L S << S- 0 0 2 -3,-1.5 -9,-0.0 -4,-0.6 13,-0.0 -0.504 86.8 -91.7 -57.8 143.3 8.2 4.1 6.3 34 33 A P > - 0 0 58 0, 0.0 3,-2.3 0, 0.0 -1,-0.1 -0.166 34.6-112.3 -52.5 152.1 12.0 4.5 6.6 35 34 A D T 3 S+ 0 0 155 1,-0.3 11,-0.4 -3,-0.1 -2,-0.1 0.781 118.2 46.9 -59.1 -29.4 13.8 3.4 3.5 36 35 A D T 3 S+ 0 0 131 9,-0.1 -1,-0.3 10,-0.1 2,-0.1 0.242 80.1 123.5-101.6 11.4 15.3 0.4 5.4 37 36 A W < - 0 0 15 -3,-2.3 9,-0.6 1,-0.0 2,-0.3 -0.504 45.3-164.8 -60.7 142.7 12.0 -0.7 7.0 38 37 A V B -D 45 0C 93 7,-0.2 6,-0.1 -2,-0.1 -2,-0.1 -0.887 32.6 -77.9-129.9 162.2 11.4 -4.4 6.1 39 38 A C > - 0 0 1 5,-3.0 4,-1.8 -2,-0.3 7,-0.0 -0.345 39.6-139.7 -54.6 128.2 8.6 -6.8 6.2 40 39 A P T 4 S+ 0 0 36 0, 0.0 -1,-0.2 0, 0.0 -21,-0.0 0.650 96.9 44.8 -71.0 -14.4 8.3 -7.9 9.9 41 40 A I T 4 S+ 0 0 152 3,-0.1 -2,-0.1 0, 0.0 -3,-0.0 0.904 131.9 8.9 -90.7 -59.4 7.6 -11.5 8.8 42 41 A C T 4 S- 0 0 51 2,-0.1 -3,-0.0 -31,-0.0 0, 0.0 0.546 91.9-118.3-106.0 -12.3 10.1 -12.3 6.1 43 42 A G < + 0 0 32 -4,-1.8 0, 0.0 1,-0.2 0, 0.0 0.500 54.1 159.9 84.5 8.0 12.5 -9.4 6.0 44 43 A A - 0 0 6 -6,-0.1 -5,-3.0 1,-0.1 -1,-0.2 -0.335 41.1-111.7 -64.3 143.9 11.7 -8.3 2.5 45 44 A P B > -D 38 0C 62 0, 0.0 3,-2.1 0, 0.0 -7,-0.2 -0.140 32.3 -98.5 -65.4 167.8 12.6 -4.7 1.5 46 45 A K G > S+ 0 0 33 -9,-0.6 3,-2.0 -11,-0.4 -8,-0.1 0.807 118.7 72.4 -58.0 -31.2 10.0 -2.1 0.8 47 46 A S G 3 S+ 0 0 79 1,-0.3 -1,-0.3 3,-0.0 -3,-0.0 0.679 88.6 62.4 -55.6 -24.4 10.4 -2.8 -2.9 48 47 A E G < S+ 0 0 50 -3,-2.1 -41,-2.8 2,-0.0 2,-0.3 0.342 83.6 99.3 -89.8 7.0 8.6 -6.1 -2.5 49 48 A F E < -B 6 0A 15 -3,-2.0 2,-0.4 -43,-0.2 -43,-0.2 -0.734 55.5-158.3 -98.5 142.4 5.3 -4.6 -1.4 50 49 A E E -B 5 0A 96 -45,-2.2 -45,-2.7 -2,-0.3 2,-0.3 -0.969 21.9-122.3-115.8 128.0 2.3 -4.0 -3.8 51 50 A K E -B 4 0A 68 -2,-0.4 2,-1.7 -47,-0.2 -47,-0.3 -0.574 24.3-127.8 -71.4 134.3 -0.4 -1.4 -3.0 52 51 A L S S+ 0 0 97 -49,-3.1 2,-0.3 -2,-0.3 -49,-0.3 -0.535 72.8 90.3 -90.0 81.1 -3.8 -3.1 -2.8 53 52 A E 0 0 126 -2,-1.7 -2,-0.0 -51,-0.1 -51,-0.0 -0.970 360.0 360.0-159.7 157.0 -5.8 -1.0 -5.2 54 53 A D 0 0 220 -2,-0.3 -2,-0.0 0, 0.0 -3,-0.0 -0.541 360.0 360.0 -65.5 360.0 -6.5 -1.0 -8.8