==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 17-JUN-10 2KZG . COMPND 2 MOLECULE: PRE-MRNA-PROCESSING FACTOR 40 HOMOLOG A; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR D.M.KORZHNEV,T.L.RELIGA,W.BANACHEWICZ,A.R.FERSHT,L.E.KAY . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4320.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 42.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 11 A W 0 0 108 0, 0.0 3,-0.1 0, 0.0 6,-0.0 0.000 360.0 360.0 360.0 128.5 0.8 1.2 0.0 2 12 A N + 0 0 151 1,-0.1 2,-0.3 2,-0.0 3,-0.0 0.886 360.0 18.2 -75.0 -40.7 -0.7 4.6 1.1 3 13 A T S >> S- 0 0 78 1,-0.1 4,-1.1 48,-0.0 3,-1.1 -0.864 79.7-111.0-129.2 163.7 1.4 6.6 -1.4 4 14 A K H 3> S+ 0 0 85 -2,-0.3 4,-2.1 1,-0.3 5,-0.1 0.789 114.6 66.5 -61.7 -28.0 3.4 6.0 -4.5 5 15 A E H 3> S+ 0 0 117 1,-0.2 4,-1.8 2,-0.2 -1,-0.3 0.811 97.8 52.7 -64.9 -30.5 6.5 6.7 -2.5 6 16 A E H <> S+ 0 0 73 -3,-1.1 4,-1.9 2,-0.2 -1,-0.2 0.860 108.5 49.2 -73.6 -37.1 5.9 3.6 -0.4 7 17 A A H X S+ 0 0 0 -4,-1.1 4,-2.3 2,-0.2 -2,-0.2 0.856 109.3 53.8 -65.8 -36.6 5.7 1.5 -3.6 8 18 A K H X S+ 0 0 38 -4,-2.1 4,-2.3 2,-0.2 -2,-0.2 0.896 106.2 52.6 -63.4 -41.6 8.9 3.1 -4.8 9 19 A Q H X S+ 0 0 110 -4,-1.8 4,-2.2 1,-0.2 -2,-0.2 0.944 111.8 44.5 -57.8 -50.7 10.6 2.1 -1.5 10 20 A A H X S+ 0 0 7 -4,-1.9 4,-2.5 1,-0.2 5,-0.2 0.870 109.7 58.1 -63.1 -38.0 9.5 -1.5 -1.9 11 21 A F H X S+ 0 0 2 -4,-2.3 4,-1.9 2,-0.2 -2,-0.2 0.954 109.9 41.5 -55.2 -54.5 10.6 -1.4 -5.6 12 22 A K H X S+ 0 0 107 -4,-2.3 4,-1.7 1,-0.2 -1,-0.2 0.883 113.1 54.4 -63.3 -40.1 14.1 -0.4 -4.8 13 23 A E H X S+ 0 0 97 -4,-2.2 4,-2.0 1,-0.2 -1,-0.2 0.894 109.7 46.7 -61.3 -41.7 14.3 -2.9 -1.9 14 24 A L H X S+ 0 0 9 -4,-2.5 4,-2.1 2,-0.2 -1,-0.2 0.828 106.6 58.9 -70.2 -32.8 13.2 -5.7 -4.2 15 25 A L H <>S+ 0 0 38 -4,-1.9 5,-2.8 -5,-0.2 -1,-0.2 0.856 108.6 46.1 -60.7 -36.4 15.8 -4.6 -6.7 16 26 A K H ><5S+ 0 0 135 -4,-1.7 3,-1.1 3,-0.2 -2,-0.2 0.900 111.2 50.7 -71.3 -43.3 18.4 -5.1 -4.0 17 27 A E H 3<5S+ 0 0 126 -4,-2.0 -2,-0.2 1,-0.3 -1,-0.2 0.822 117.0 41.0 -64.3 -31.7 17.0 -8.5 -3.0 18 28 A K T 3<5S- 0 0 73 -4,-2.1 -1,-0.3 -5,-0.1 -2,-0.2 0.293 105.7-130.8 -98.2 7.9 17.1 -9.6 -6.7 19 29 A R T < 5 - 0 0 222 -3,-1.1 -3,-0.2 1,-0.2 -4,-0.1 0.902 30.3-158.7 40.1 56.2 20.4 -7.9 -7.3 20 30 A V < - 0 0 25 -5,-2.8 -1,-0.2 1,-0.1 9,-0.1 -0.495 19.2-112.1 -69.6 122.3 19.1 -6.2 -10.4 21 31 A P > - 0 0 76 0, 0.0 3,-1.6 0, 0.0 -1,-0.1 -0.180 13.8-130.0 -55.1 142.8 21.9 -5.1 -12.7 22 32 A S T 3 S+ 0 0 118 1,-0.3 -2,-0.1 -3,-0.1 -3,-0.0 0.720 111.6 52.6 -66.7 -20.8 22.4 -1.4 -13.0 23 33 A N T 3 S+ 0 0 154 2,-0.1 -1,-0.3 0, 0.0 2,-0.2 0.360 87.2 114.2 -95.3 3.5 22.4 -1.9 -16.8 24 34 A A < - 0 0 26 -3,-1.6 2,-0.1 1,-0.1 -4,-0.0 -0.486 69.9-114.3 -76.4 144.9 19.1 -3.8 -16.6 25 35 A S > - 0 0 67 -2,-0.2 4,-2.4 1,-0.1 5,-0.2 -0.355 23.2-112.7 -75.0 158.1 16.0 -2.2 -18.3 26 36 A W H > S+ 0 0 39 1,-0.2 4,-2.0 2,-0.2 5,-0.1 0.911 120.2 48.6 -55.3 -45.5 13.0 -1.1 -16.2 27 37 A E H > S+ 0 0 128 1,-0.2 4,-1.9 2,-0.2 -1,-0.2 0.874 109.8 52.1 -64.1 -38.5 10.9 -3.8 -17.8 28 38 A Q H > S+ 0 0 99 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.877 108.3 51.2 -65.0 -38.7 13.6 -6.4 -17.0 29 39 A A H X S+ 0 0 5 -4,-2.4 4,-2.0 2,-0.2 -2,-0.2 0.885 107.7 53.0 -64.1 -40.0 13.7 -5.3 -13.4 30 40 A M H X S+ 0 0 11 -4,-2.0 4,-2.3 2,-0.2 -2,-0.2 0.883 107.7 51.5 -61.6 -39.8 9.9 -5.7 -13.2 31 41 A K H X S+ 0 0 136 -4,-1.9 4,-1.6 2,-0.2 -2,-0.2 0.900 108.7 50.3 -63.7 -42.2 10.3 -9.2 -14.5 32 42 A M H X S+ 0 0 48 -4,-2.0 4,-0.6 1,-0.2 -1,-0.2 0.847 109.9 51.7 -65.0 -34.7 12.9 -10.0 -11.9 33 43 A I H >< S+ 0 0 0 -4,-2.0 3,-1.2 2,-0.2 6,-0.3 0.912 104.8 55.5 -65.1 -44.3 10.5 -8.6 -9.3 34 44 A I H 3< S+ 0 0 85 -4,-2.3 5,-0.2 1,-0.3 -2,-0.2 0.868 102.1 57.2 -56.3 -38.7 7.7 -10.9 -10.6 35 45 A N H 3< S+ 0 0 124 -4,-1.6 -1,-0.3 -5,-0.1 -2,-0.2 0.760 91.7 90.0 -63.6 -25.1 10.0 -13.8 -10.0 36 46 A D S X< S- 0 0 18 -3,-1.2 3,-2.5 -4,-0.6 4,-0.2 -0.594 80.6-137.0 -76.7 131.8 10.2 -12.7 -6.4 37 47 A P G > S+ 0 0 119 0, 0.0 3,-0.6 0, 0.0 -1,-0.1 0.672 104.3 66.5 -62.5 -16.0 7.5 -14.2 -4.1 38 48 A R G > + 0 0 159 1,-0.2 3,-1.8 -5,-0.1 4,-0.5 0.383 69.5 101.5 -85.3 3.3 7.1 -10.7 -2.6 39 49 A Y G X> + 0 0 66 -3,-2.5 4,-2.3 -6,-0.3 3,-2.0 0.864 68.2 68.3 -52.5 -38.7 5.8 -9.5 -6.0 40 50 A S H <> S+ 0 0 80 -3,-0.6 4,-2.0 1,-0.3 -1,-0.3 0.771 86.7 68.7 -56.2 -26.7 2.2 -9.7 -4.6 41 51 A A H <4 S+ 0 0 40 -3,-1.8 -1,-0.3 1,-0.2 4,-0.2 0.842 111.1 31.6 -60.7 -34.3 3.2 -6.8 -2.3 42 52 A L H X4 S+ 0 0 0 -3,-2.0 3,-1.4 -4,-0.5 -2,-0.2 0.801 111.9 62.8 -91.9 -35.7 3.3 -4.5 -5.4 43 53 A A H 3< S+ 0 0 45 -4,-2.3 -2,-0.2 1,-0.3 5,-0.2 0.843 91.2 69.1 -57.8 -34.9 0.6 -6.3 -7.4 44 54 A K T 3< S+ 0 0 183 -4,-2.0 2,-0.6 -5,-0.2 -1,-0.3 0.840 85.5 81.5 -51.6 -35.4 -1.8 -5.4 -4.7 45 55 A L X - 0 0 34 -3,-1.4 3,-1.7 -4,-0.2 4,-0.2 -0.650 69.0-156.9 -81.3 116.7 -1.5 -1.8 -5.8 46 56 A S T 3 S+ 0 0 123 -2,-0.6 3,-0.2 1,-0.3 -1,-0.2 0.720 98.8 50.1 -64.1 -20.8 -3.6 -1.1 -8.9 47 57 A E T 3> S+ 0 0 93 1,-0.2 4,-1.5 2,-0.1 -1,-0.3 -0.138 73.9 131.8-106.0 35.7 -1.2 1.8 -9.6 48 58 A K T X4 S+ 0 0 23 -3,-1.7 3,-0.8 1,-0.2 4,-0.3 0.951 79.0 33.7 -51.5 -60.8 1.9 -0.4 -9.3 49 59 A K G >4 S+ 0 0 110 1,-0.3 3,-1.3 -3,-0.2 -1,-0.2 0.834 115.0 59.1 -67.6 -33.3 3.5 0.7 -12.5 50 60 A Q G >4 S+ 0 0 110 1,-0.3 3,-0.6 2,-0.1 -1,-0.3 0.719 101.1 56.8 -67.9 -20.9 2.1 4.2 -12.1 51 61 A A G << S+ 0 0 0 -4,-1.5 3,-0.4 -3,-0.8 -1,-0.3 0.544 95.9 66.5 -85.0 -8.6 4.0 4.4 -8.8 52 62 A F G X> + 0 0 0 -3,-1.3 4,-2.4 -4,-0.3 3,-1.6 -0.042 58.7 120.3-104.0 30.0 7.3 3.7 -10.6 53 63 A N T <4 S+ 0 0 94 -3,-0.6 -1,-0.2 1,-0.3 -2,-0.1 0.756 71.3 60.9 -64.5 -24.6 7.4 6.9 -12.6 54 64 A A T 34 S+ 0 0 70 -3,-0.4 -1,-0.3 1,-0.2 -2,-0.1 0.623 114.5 34.5 -76.1 -13.3 10.7 7.7 -10.8 55 65 A Y T <4 0 0 83 -3,-1.6 -2,-0.2 1,-0.0 -1,-0.2 0.680 360.0 360.0-111.8 -30.0 12.2 4.5 -12.3 56 66 A K < 0 0 153 -4,-2.4 -3,-0.2 -7,-0.2 -2,-0.2 0.421 360.0 360.0 -90.0 360.0 10.4 4.4 -15.7