==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 18-JUN-10 2KZI . COMPND 2 MOLECULE: ENGINEERED PROTEIN, ZHER2 AFFIBODY; . SOURCE 2 ORGANISM_SCIENTIFIC: STAPHYLOCOCCUS AUREUS; . AUTHOR T.HARD . 58 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4757.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 42 72.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 17.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 32 55.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 148 0, 0.0 5,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 157.3 1.8 -5.9 -18.7 2 2 A D > - 0 0 112 1,-0.1 3,-1.9 3,-0.1 4,-0.5 -0.279 360.0-115.4 -62.1 145.2 4.0 -8.8 -17.6 3 3 A N T 3> S+ 0 0 113 1,-0.3 4,-2.5 2,-0.2 3,-0.3 0.725 106.1 83.6 -52.6 -25.3 2.6 -11.3 -15.1 4 4 A K H 3> S+ 0 0 90 1,-0.2 4,-2.4 2,-0.2 -1,-0.3 0.843 85.0 57.3 -48.5 -39.4 5.3 -10.1 -12.7 5 5 A F H <> S+ 0 0 51 -3,-1.9 4,-2.3 1,-0.2 -1,-0.2 0.953 110.1 41.2 -58.3 -54.0 3.1 -7.2 -11.7 6 6 A N H > S+ 0 0 117 -4,-0.5 4,-1.5 -3,-0.3 -2,-0.2 0.893 114.3 53.1 -62.1 -42.8 0.1 -9.3 -10.6 7 7 A K H < S+ 0 0 140 -4,-2.5 4,-0.5 2,-0.2 -1,-0.2 0.891 113.8 41.6 -61.2 -43.4 2.4 -11.9 -8.9 8 8 A E H >X S+ 0 0 54 -4,-2.4 3,-1.4 -5,-0.2 4,-0.6 0.945 113.7 49.6 -71.3 -50.8 4.2 -9.2 -6.8 9 9 A M H >< S+ 0 0 31 -4,-2.3 3,-0.9 1,-0.3 -1,-0.2 0.775 95.6 74.0 -60.6 -27.1 1.1 -7.1 -5.8 10 10 A R T 3< S+ 0 0 195 -4,-1.5 -1,-0.3 1,-0.3 3,-0.2 0.858 94.4 53.6 -54.1 -35.2 -0.7 -10.3 -4.7 11 11 A N T <4 S+ 0 0 132 -3,-1.4 2,-0.3 -4,-0.5 -1,-0.3 0.801 126.3 15.9 -68.7 -32.3 1.6 -10.2 -1.7 12 12 A A S << S+ 0 0 4 -3,-0.9 -1,-0.3 -4,-0.6 32,-0.0 -0.901 88.2 90.6-149.7 117.0 0.6 -6.6 -0.9 13 13 A Y S >> S+ 0 0 82 -2,-0.3 3,-1.4 -3,-0.2 4,-0.7 0.008 86.3 34.5-161.5 -81.9 -2.4 -4.6 -2.2 14 14 A W H >> S+ 0 0 188 1,-0.3 4,-1.3 2,-0.2 3,-0.5 0.790 107.1 72.9 -61.0 -28.4 -5.8 -4.6 -0.4 15 15 A E H 3> S+ 0 0 81 1,-0.3 4,-0.7 2,-0.2 -1,-0.3 0.819 90.8 57.9 -56.1 -32.2 -3.9 -4.8 2.9 16 16 A I H X4 S+ 0 0 0 -3,-1.4 3,-0.7 1,-0.2 -1,-0.3 0.901 107.8 45.2 -64.7 -42.3 -2.9 -1.1 2.4 17 17 A A H << S+ 0 0 41 -4,-0.7 -1,-0.2 -3,-0.5 -2,-0.2 0.691 94.7 81.1 -73.6 -20.9 -6.6 -0.1 2.3 18 18 A L H 3< S+ 0 0 136 -4,-1.3 -1,-0.2 2,-0.1 -2,-0.2 0.850 70.6 89.1 -54.5 -38.3 -7.3 -2.3 5.3 19 19 A L << - 0 0 11 -4,-0.7 3,-0.3 -3,-0.7 8,-0.0 -0.481 61.4-167.5 -65.1 121.1 -6.0 0.5 7.7 20 20 A P S S+ 0 0 116 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 0.534 78.5 59.1 -87.9 -10.1 -9.1 2.7 8.5 21 21 A N S S+ 0 0 45 2,-0.1 2,-0.2 0, 0.0 -2,-0.1 0.507 75.0 111.0 -99.2 -4.7 -7.1 5.6 10.1 22 22 A L S S- 0 0 9 -3,-0.3 5,-0.1 1,-0.1 30,-0.0 -0.507 76.9-107.5 -71.7 135.1 -4.9 6.5 7.0 23 23 A N > - 0 0 78 -2,-0.2 4,-2.4 1,-0.1 5,-0.2 -0.084 28.9-105.5 -57.9 160.6 -5.9 9.9 5.5 24 24 A N H > S+ 0 0 130 1,-0.2 4,-1.9 2,-0.2 5,-0.2 0.924 122.0 42.0 -53.8 -51.6 -7.7 10.0 2.1 25 25 A Q H > S+ 0 0 155 1,-0.2 4,-2.2 2,-0.2 -1,-0.2 0.843 111.4 57.3 -66.5 -35.5 -4.6 11.1 0.2 26 26 A Q H > S+ 0 0 31 2,-0.2 4,-2.0 1,-0.2 -2,-0.2 0.914 107.7 46.4 -62.9 -44.6 -2.4 8.7 2.1 27 27 A K H X S+ 0 0 53 -4,-2.4 4,-1.9 1,-0.2 5,-0.2 0.966 116.7 42.8 -61.8 -54.5 -4.4 5.6 1.1 28 28 A R H X S+ 0 0 190 -4,-1.9 4,-2.1 1,-0.2 -1,-0.2 0.818 110.2 60.5 -60.6 -33.5 -4.6 6.6 -2.6 29 29 A A H X S+ 0 0 41 -4,-2.2 4,-2.6 2,-0.2 -1,-0.2 0.942 106.0 43.8 -61.4 -51.6 -0.9 7.6 -2.5 30 30 A F H X S+ 0 0 23 -4,-2.0 4,-1.7 2,-0.2 -2,-0.2 0.940 114.3 49.2 -60.9 -49.1 0.3 4.1 -1.5 31 31 A I H X S+ 0 0 58 -4,-1.9 4,-0.9 1,-0.2 -1,-0.2 0.879 114.3 46.8 -58.9 -37.4 -1.9 2.3 -4.1 32 32 A R H >X S+ 0 0 192 -4,-2.1 4,-1.6 1,-0.2 3,-0.5 0.899 107.0 57.5 -69.2 -40.6 -0.7 4.8 -6.7 33 33 A S H 3X S+ 0 0 35 -4,-2.6 4,-2.4 1,-0.2 -2,-0.2 0.815 94.8 67.2 -59.3 -31.9 2.9 4.3 -5.6 34 34 A L H 3< S+ 0 0 2 -4,-1.7 -1,-0.2 1,-0.2 -2,-0.2 0.938 104.1 43.0 -54.1 -49.2 2.5 0.5 -6.3 35 35 A Y H << S+ 0 0 178 -4,-0.9 -1,-0.2 -3,-0.5 -2,-0.2 0.888 110.4 57.1 -63.2 -41.0 2.1 1.3 -10.0 36 36 A D H < S- 0 0 121 -4,-1.6 -1,-0.2 1,-0.3 -2,-0.2 0.868 135.2 -7.9 -58.5 -39.3 5.0 3.8 -9.8 37 37 A D >< - 0 0 67 -4,-2.4 3,-1.4 -3,-0.1 -1,-0.3 -0.626 56.8-176.1-162.8 95.5 7.3 1.0 -8.4 38 38 A P G > S+ 0 0 12 0, 0.0 3,-1.1 0, 0.0 4,-0.2 0.650 83.6 73.0 -69.6 -13.6 6.0 -2.5 -7.5 39 39 A S G 3 S+ 0 0 66 1,-0.3 3,-0.4 2,-0.1 4,-0.2 0.724 95.3 51.5 -72.1 -21.2 9.5 -3.4 -6.2 40 40 A Q G X> S+ 0 0 68 -3,-1.4 4,-3.2 1,-0.2 3,-0.8 0.369 76.4 109.8 -93.6 1.2 8.9 -1.1 -3.2 41 41 A S H <> S+ 0 0 17 -3,-1.1 4,-2.4 1,-0.3 5,-0.2 0.838 77.7 51.5 -45.2 -41.6 5.6 -2.9 -2.5 42 42 A A H 3> S+ 0 0 66 -3,-0.4 4,-1.8 -4,-0.2 -1,-0.3 0.894 114.5 43.1 -64.5 -39.6 7.1 -4.4 0.7 43 43 A N H <> S+ 0 0 96 -3,-0.8 4,-3.2 2,-0.2 -2,-0.2 0.917 112.5 51.8 -71.1 -46.3 8.3 -1.0 1.8 44 44 A L H X S+ 0 0 18 -4,-3.2 4,-2.4 2,-0.2 -2,-0.2 0.905 110.5 49.0 -57.8 -44.7 5.0 0.8 0.8 45 45 A L H X S+ 0 0 48 -4,-2.4 4,-1.9 -5,-0.3 -1,-0.2 0.941 114.8 44.0 -61.0 -48.2 3.0 -1.8 2.8 46 46 A A H X S+ 0 0 60 -4,-1.8 4,-1.6 1,-0.2 -2,-0.2 0.897 113.0 53.2 -62.4 -40.2 5.2 -1.3 5.9 47 47 A E H X S+ 0 0 75 -4,-3.2 4,-1.9 1,-0.2 -2,-0.2 0.864 105.8 53.4 -62.8 -37.7 5.1 2.4 5.3 48 48 A A H X S+ 0 0 0 -4,-2.4 4,-2.2 1,-0.2 -1,-0.2 0.916 107.8 50.2 -64.1 -42.1 1.3 2.3 5.3 49 49 A K H X S+ 0 0 119 -4,-1.9 4,-2.9 1,-0.2 -1,-0.2 0.825 105.6 59.0 -64.1 -31.9 1.4 0.5 8.7 50 50 A K H X S+ 0 0 119 -4,-1.6 4,-2.3 2,-0.2 -2,-0.2 0.945 107.9 43.1 -62.4 -49.4 3.8 3.2 9.9 51 51 A L H X S+ 0 0 47 -4,-1.9 4,-3.1 2,-0.2 5,-0.3 0.887 113.4 54.2 -63.7 -38.2 1.2 6.0 9.2 52 52 A N H X S+ 0 0 31 -4,-2.2 4,-2.0 1,-0.2 -2,-0.2 0.937 110.9 44.3 -59.8 -49.1 -1.5 3.7 10.7 53 53 A D H < S+ 0 0 126 -4,-2.9 -1,-0.2 2,-0.2 -2,-0.2 0.862 116.0 48.8 -63.2 -38.9 0.5 3.3 13.9 54 54 A A H < S+ 0 0 71 -4,-2.3 -2,-0.2 -5,-0.2 -1,-0.2 0.943 117.3 37.6 -67.5 -52.1 1.3 7.0 14.0 55 55 A Q H < S+ 0 0 67 -4,-3.1 -2,-0.2 -5,-0.1 -1,-0.2 0.736 95.5 104.5 -73.3 -25.0 -2.2 8.4 13.5 56 56 A A S < S- 0 0 26 -4,-2.0 -3,-0.0 -5,-0.3 -4,-0.0 -0.221 81.3-101.0 -57.7 147.1 -3.8 5.6 15.6 57 57 A P 0 0 110 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 -0.249 360.0 360.0 -68.9 158.4 -4.9 6.7 19.2 58 58 A K 0 0 265 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 0.380 360.0 360.0 65.4 360.0 -2.9 6.0 22.3