==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 18-JUN-10 2KZJ . COMPND 2 MOLECULE: ENGINEERED PROTEIN, ZHER2 AFFIBODY; . SOURCE 2 ORGANISM_SCIENTIFIC: STAPHYLOCOCCUS AUREUS; . AUTHOR T.HARD . 58 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4874.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 70.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 8.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 35 60.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A V 0 0 142 0, 0.0 4,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 91.8 5.4 20.2 -1.9 2 2 A D - 0 0 148 2,-0.1 3,-0.1 0, 0.0 0, 0.0 0.999 360.0 -4.3 -66.5 -67.9 4.0 23.0 0.3 3 3 A N S S- 0 0 145 1,-0.3 2,-0.3 0, 0.0 0, 0.0 0.923 126.0 -52.0 -90.4 -61.5 3.0 21.0 3.4 4 4 A K - 0 0 114 0, 0.0 2,-2.1 0, 0.0 3,-0.4 -0.920 45.7 -99.6-176.9 152.4 3.7 17.4 2.4 5 5 A F >> + 0 0 85 -2,-0.3 3,-0.7 1,-0.2 4,-0.7 -0.300 63.4 141.8 -79.3 56.2 3.0 14.8 -0.4 6 6 A N H 3> + 0 0 84 -2,-2.1 4,-1.8 1,-0.2 3,-0.4 0.778 58.9 71.9 -66.1 -29.0 0.2 13.2 1.7 7 7 A K H 3> S+ 0 0 150 -3,-0.4 4,-1.9 1,-0.2 -1,-0.2 0.853 91.5 56.5 -56.5 -38.4 -1.8 12.7 -1.6 8 8 A E H <> S+ 0 0 113 -3,-0.7 4,-2.0 1,-0.2 -1,-0.2 0.891 106.8 49.5 -61.7 -40.0 0.5 9.9 -2.7 9 9 A M H X S+ 0 0 40 -4,-0.7 4,-2.6 -3,-0.4 -1,-0.2 0.881 106.0 56.8 -66.0 -39.6 -0.1 8.0 0.5 10 10 A R H X S+ 0 0 144 -4,-1.8 4,-1.9 2,-0.2 5,-0.3 0.911 108.1 47.5 -58.0 -45.1 -3.9 8.4 0.0 11 11 A N H X S+ 0 0 92 -4,-1.9 4,-2.2 1,-0.2 -2,-0.2 0.948 116.8 41.3 -62.4 -51.3 -3.7 6.7 -3.4 12 12 A A H X S+ 0 0 3 -4,-2.0 4,-1.8 2,-0.2 5,-0.3 0.800 110.2 63.0 -67.5 -28.9 -1.6 3.8 -2.2 13 13 A Y H X S+ 0 0 119 -4,-2.6 4,-1.7 -5,-0.2 -2,-0.2 0.987 115.7 25.3 -59.0 -64.9 -3.7 3.5 1.0 14 14 A W H X S+ 0 0 171 -4,-1.9 4,-1.8 2,-0.2 -2,-0.2 0.851 117.5 62.1 -71.1 -36.2 -7.0 2.7 -0.6 15 15 A E H X S+ 0 0 68 -4,-2.2 4,-0.6 -5,-0.3 -1,-0.2 0.904 109.2 42.4 -57.9 -40.7 -5.5 1.1 -3.8 16 16 A I H >< S+ 0 0 1 -4,-1.8 3,-1.2 1,-0.2 -1,-0.2 0.922 110.8 55.4 -69.7 -44.7 -3.8 -1.6 -1.7 17 17 A A H 3< S+ 0 0 38 -4,-1.7 -1,-0.2 1,-0.3 -2,-0.2 0.782 96.4 69.0 -57.6 -28.9 -6.9 -2.0 0.5 18 18 A L H 3< S+ 0 0 137 -4,-1.8 -1,-0.3 -5,-0.1 -2,-0.2 0.851 77.5 89.7 -60.2 -37.6 -8.8 -2.7 -2.8 19 19 A L << - 0 0 22 -3,-1.2 3,-0.4 -4,-0.6 8,-0.0 -0.492 59.6-168.5 -66.0 120.9 -6.9 -6.1 -3.3 20 20 A P S S+ 0 0 118 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 0.492 76.8 62.2 -88.4 -7.9 -9.0 -8.8 -1.5 21 21 A N S S+ 0 0 47 2,-0.1 2,-0.3 3,-0.0 3,-0.1 0.473 73.4 111.0 -99.2 -2.2 -6.5 -11.7 -1.6 22 22 A L S S- 0 0 10 -3,-0.4 5,-0.1 -6,-0.2 30,-0.1 -0.558 80.3-103.4 -74.5 133.3 -3.7 -10.0 0.5 23 23 A N > - 0 0 71 -2,-0.3 4,-2.7 1,-0.1 5,-0.2 -0.158 29.3-113.6 -53.1 146.8 -3.3 -11.6 3.9 24 24 A N H > S+ 0 0 118 1,-0.2 4,-1.5 2,-0.2 5,-0.2 0.861 118.7 47.6 -52.0 -40.7 -4.8 -9.7 6.8 25 25 A Q H > S+ 0 0 156 1,-0.2 4,-2.4 2,-0.2 -1,-0.2 0.899 111.9 49.5 -68.2 -42.5 -1.4 -9.0 8.2 26 26 A Q H > S+ 0 0 49 2,-0.2 4,-2.6 1,-0.2 5,-0.3 0.898 106.9 54.9 -64.2 -43.4 0.0 -7.9 4.9 27 27 A K H X S+ 0 0 54 -4,-2.7 4,-1.3 1,-0.2 -1,-0.2 0.931 116.8 36.2 -57.1 -48.0 -2.9 -5.5 4.2 28 28 A R H X S+ 0 0 159 -4,-1.5 4,-2.1 -5,-0.2 -1,-0.2 0.840 114.7 59.6 -72.3 -35.8 -2.3 -3.7 7.5 29 29 A A H X S+ 0 0 51 -4,-2.4 4,-2.5 2,-0.2 -2,-0.2 0.952 107.0 42.0 -59.1 -56.8 1.5 -4.1 7.2 30 30 A F H X S+ 0 0 34 -4,-2.6 4,-1.5 2,-0.2 -1,-0.2 0.924 113.9 52.1 -59.9 -45.8 2.0 -2.2 3.9 31 31 A I H X S+ 0 0 33 -4,-1.3 4,-0.6 -5,-0.3 3,-0.2 0.894 115.2 42.4 -58.6 -38.7 -0.5 0.6 4.9 32 32 A R H >X S+ 0 0 180 -4,-2.1 4,-1.6 1,-0.2 3,-0.5 0.832 105.2 65.5 -74.2 -32.5 1.5 1.1 8.2 33 33 A S H 3X S+ 0 0 34 -4,-2.5 4,-2.3 1,-0.2 -2,-0.2 0.826 89.4 67.3 -58.2 -33.2 4.8 0.7 6.3 34 34 A L H 3< S+ 0 0 11 -4,-1.5 -1,-0.2 1,-0.2 3,-0.2 0.939 104.3 42.4 -52.6 -50.3 3.9 4.0 4.4 35 35 A Y H << S+ 0 0 218 -4,-0.6 -1,-0.2 -3,-0.5 -2,-0.2 0.874 109.9 58.9 -63.3 -39.2 4.3 5.9 7.7 36 36 A D H < S- 0 0 121 -4,-1.6 -1,-0.2 1,-0.2 -2,-0.2 0.860 133.0 -2.5 -59.3 -38.3 7.4 3.8 8.6 37 37 A D >< - 0 0 74 -4,-2.3 3,-2.0 -3,-0.2 -1,-0.2 -0.549 59.8-178.0-158.5 84.5 9.2 5.0 5.4 38 38 A P G > S+ 0 0 30 0, 0.0 3,-1.8 0, 0.0 4,-0.3 0.749 82.0 73.7 -55.1 -25.2 7.2 7.4 2.9 39 39 A S G 3 S+ 0 0 76 1,-0.3 3,-0.4 2,-0.1 4,-0.2 0.795 95.4 49.1 -60.4 -30.9 10.3 7.3 0.7 40 40 A Q G <> S+ 0 0 78 -3,-2.0 4,-3.8 1,-0.2 3,-0.3 0.287 76.3 115.4 -92.1 8.8 9.4 3.7 -0.3 41 41 A S H <> S+ 0 0 23 -3,-1.8 4,-2.5 1,-0.3 5,-0.2 0.880 79.2 45.6 -43.7 -50.9 5.7 4.6 -1.1 42 42 A A H > S+ 0 0 69 -3,-0.4 4,-1.8 -4,-0.3 -1,-0.3 0.881 117.8 44.5 -62.3 -39.4 6.1 3.8 -4.8 43 43 A N H > S+ 0 0 88 -3,-0.3 4,-3.5 2,-0.2 -2,-0.2 0.940 112.9 49.1 -70.4 -49.6 7.9 0.5 -3.9 44 44 A L H X S+ 0 0 20 -4,-3.8 4,-2.7 2,-0.2 -2,-0.2 0.903 112.1 49.4 -57.0 -44.8 5.5 -0.5 -1.1 45 45 A L H X S+ 0 0 40 -4,-2.5 4,-2.1 -5,-0.3 -1,-0.2 0.941 115.5 42.8 -60.2 -48.6 2.5 0.1 -3.4 46 46 A A H X S+ 0 0 58 -4,-1.8 4,-1.9 -5,-0.2 -2,-0.2 0.912 114.3 51.9 -62.8 -43.4 4.1 -1.9 -6.2 47 47 A E H X S+ 0 0 77 -4,-3.5 4,-1.7 2,-0.2 -2,-0.2 0.865 107.2 53.0 -61.2 -38.9 5.1 -4.5 -3.7 48 48 A A H X S+ 0 0 0 -4,-2.7 4,-1.7 1,-0.2 -1,-0.2 0.934 109.2 47.9 -63.5 -45.9 1.6 -4.7 -2.4 49 49 A K H X S+ 0 0 103 -4,-2.1 4,-3.1 1,-0.2 -1,-0.2 0.835 105.9 60.5 -63.1 -32.4 0.2 -5.3 -5.9 50 50 A K H X S+ 0 0 112 -4,-1.9 4,-2.6 2,-0.2 -1,-0.2 0.916 103.9 48.8 -60.8 -43.7 3.0 -8.0 -6.3 51 51 A L H X S+ 0 0 36 -4,-1.7 4,-3.2 2,-0.2 5,-0.3 0.891 112.2 49.7 -62.8 -39.7 1.5 -9.9 -3.4 52 52 A N H X S+ 0 0 31 -4,-1.7 4,-1.9 1,-0.2 -2,-0.2 0.942 113.4 44.7 -63.4 -49.8 -1.9 -9.6 -5.0 53 53 A D H < S+ 0 0 126 -4,-3.1 -2,-0.2 2,-0.2 -1,-0.2 0.856 119.2 43.6 -62.6 -38.6 -0.7 -10.8 -8.4 54 54 A A H < S+ 0 0 72 -4,-2.6 -2,-0.2 -5,-0.2 -3,-0.2 0.944 116.3 43.2 -74.1 -51.5 1.3 -13.6 -6.8 55 55 A Q H < S+ 0 0 84 -4,-3.2 -2,-0.2 -5,-0.2 -3,-0.2 0.769 93.6 104.0 -65.8 -27.3 -1.3 -14.9 -4.2 56 56 A A S < S- 0 0 29 -4,-1.9 -3,-0.0 -5,-0.3 -4,-0.0 -0.209 82.5-100.2 -56.3 145.3 -4.1 -14.6 -6.9 57 57 A P 0 0 117 0, 0.0 -1,-0.1 0, 0.0 -2,-0.0 -0.034 360.0 360.0 -61.4 170.0 -5.2 -18.0 -8.4 58 58 A K 0 0 251 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.390 360.0 360.0 60.8 360.0 -4.0 -19.3 -11.8