==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-FEB-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 21-JUN-10 2KZQ . COMPND 2 MOLECULE: ENVELOPE GLYCOPROTEIN E2 PEPTIDE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.MONTSERRET,J.DUBUISSON,F.PENIN . 36 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3892.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 55.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 38.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A S 0 0 157 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 126.3 -19.4 -13.8 -6.1 2 2 A D + 0 0 149 2,-0.0 3,-0.2 1,-0.0 0, 0.0 0.138 360.0 77.5 62.2 173.3 -17.7 -13.9 -2.7 3 3 A L - 0 0 97 1,-0.2 2,-2.2 2,-0.1 3,-0.3 0.979 60.2-164.7 52.4 66.8 -17.7 -10.9 -0.3 4 4 A P S S+ 0 0 134 0, 0.0 -1,-0.2 0, 0.0 -2,-0.0 -0.360 74.5 53.8 -79.2 60.5 -21.3 -11.3 1.0 5 5 A A - 0 0 59 -2,-2.2 -2,-0.1 -3,-0.2 -3,-0.0 0.313 63.4-168.6-154.3 -54.9 -21.4 -7.8 2.5 6 6 A L + 0 0 155 -3,-0.3 3,-0.2 1,-0.1 -3,-0.0 0.784 58.1 111.7 57.8 26.0 -20.5 -5.0 -0.1 7 7 A S + 0 0 108 1,-0.2 -1,-0.1 2,-0.1 4,-0.1 0.054 60.2 66.6-116.0 26.1 -20.4 -2.5 2.8 8 8 A T > + 0 0 48 2,-0.1 4,-0.7 3,-0.1 -1,-0.2 -0.359 55.6 122.1-141.6 58.6 -16.6 -1.9 2.8 9 9 A G H > S+ 0 0 59 -3,-0.2 4,-2.4 2,-0.2 5,-0.2 0.953 82.1 34.2 -85.2 -64.8 -15.7 -0.0 -0.5 10 10 A L H > S+ 0 0 150 1,-0.2 4,-2.3 2,-0.2 5,-0.2 0.909 118.0 56.1 -58.3 -40.7 -14.1 3.2 0.6 11 11 A L H > S+ 0 0 112 1,-0.2 4,-2.0 2,-0.2 -1,-0.2 0.959 109.4 44.9 -57.5 -50.4 -12.5 1.4 3.6 12 12 A H H X S+ 0 0 103 -4,-0.7 4,-2.3 1,-0.2 -1,-0.2 0.922 110.4 55.4 -61.1 -41.9 -10.8 -1.2 1.3 13 13 A L H X S+ 0 0 103 -4,-2.4 4,-1.8 1,-0.2 5,-0.2 0.922 106.4 51.3 -58.1 -42.7 -9.7 1.6 -1.0 14 14 A H H X S+ 0 0 115 -4,-2.3 4,-3.3 1,-0.2 5,-0.3 0.956 110.1 47.9 -61.0 -49.2 -7.9 3.4 1.9 15 15 A Q H X S+ 0 0 116 -4,-2.0 4,-1.5 1,-0.2 -1,-0.2 0.899 108.4 56.1 -60.1 -37.8 -6.0 0.3 2.9 16 16 A N H < S+ 0 0 112 -4,-2.3 4,-0.3 -5,-0.2 -1,-0.2 0.907 115.5 36.8 -62.3 -39.7 -5.0 -0.3 -0.7 17 17 A I H >X>S+ 0 0 89 -4,-1.8 4,-2.3 -5,-0.2 3,-1.0 0.918 116.5 51.1 -79.6 -44.1 -3.4 3.2 -0.9 18 18 A V H 3<5S+ 0 0 67 -4,-3.3 -2,-0.2 1,-0.2 -1,-0.2 0.723 112.5 49.1 -66.6 -17.9 -2.0 3.2 2.7 19 19 A D T 3<5S+ 0 0 102 -4,-1.5 -1,-0.2 -5,-0.3 -2,-0.2 0.538 122.8 29.7 -98.5 -6.2 -0.4 -0.2 2.0 20 20 A V T X>5S+ 0 0 71 -3,-1.0 4,-2.3 -4,-0.3 3,-1.0 0.740 117.8 48.5-116.4 -50.7 1.2 0.8 -1.3 21 21 A Q T 3<5S+ 0 0 107 -4,-2.3 4,-0.5 1,-0.2 5,-0.2 0.813 102.4 67.1 -63.6 -27.1 2.0 4.6 -1.2 22 22 A Y T 34 + 0 0 89 -4,-0.3 4,-2.3 -5,-0.2 5,-0.3 0.829 19.6 149.8 51.4 32.7 9.6 8.5 -0.9 27 27 A S H > S+ 0 0 82 1,-0.2 4,-1.2 2,-0.2 -1,-0.1 0.979 76.1 32.1 -59.4 -57.0 8.3 12.1 -0.7 28 28 A P H > S+ 0 0 80 0, 0.0 4,-1.0 0, 0.0 -1,-0.2 0.791 115.4 62.6 -71.5 -27.5 10.9 13.3 1.8 29 29 A A H >4 S+ 0 0 31 1,-0.2 3,-1.0 2,-0.2 4,-0.4 0.970 103.9 44.9 -63.4 -52.5 13.5 10.9 0.2 30 30 A I H >X S+ 0 0 94 -4,-2.3 4,-1.9 1,-0.2 3,-1.3 0.882 106.3 62.1 -60.5 -35.9 13.5 12.6 -3.2 31 31 A T H 3< S+ 0 0 93 -4,-1.2 4,-0.3 -5,-0.3 -1,-0.2 0.819 112.2 37.2 -61.1 -27.8 13.6 16.0 -1.6 32 32 A K T << S+ 0 0 119 -3,-1.0 -1,-0.3 -4,-1.0 -2,-0.2 0.332 112.7 60.1-105.4 7.5 17.0 15.1 -0.1 33 33 A Y T X4 S+ 0 0 161 -3,-1.3 3,-0.6 -4,-0.4 -2,-0.2 0.803 100.4 49.6-101.2 -39.3 18.2 13.1 -3.2 34 34 A V T 3< S+ 0 0 133 -4,-1.9 -3,-0.1 1,-0.2 -2,-0.1 0.778 120.4 38.7 -71.8 -23.6 18.2 15.8 -5.9 35 35 A V T 3 0 0 93 -5,-0.3 -1,-0.2 -4,-0.3 -2,-0.1 0.321 360.0 360.0-107.7 8.2 20.2 18.2 -3.6 36 36 A R < 0 0 239 -3,-0.6 -3,-0.2 0, 0.0 -2,-0.1 0.281 360.0 360.0-164.5 360.0 22.5 15.5 -2.1