==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER METAL BINDING PROTEIN 28-JUN-10 2KZY . COMPND 2 MOLECULE: ZFAND5 PROTEIN (ZINC FINGER PROTEIN 216 (PREDICTE . SOURCE 2 ORGANISM_SCIENTIFIC: RATTUS NORVEGICUS; . AUTHOR T.P.GARNER,J.E.LONG,M.S.SEARLE,R.LAYFIELD . 62 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6429.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 28 45.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 3.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 14.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 19.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 128 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 72.0 -43.6 -7.1 10.3 2 2 A S + 0 0 127 2,-0.0 2,-0.0 0, 0.0 0, 0.0 0.935 360.0 64.7 -83.1 -53.8 -44.5 -10.5 8.9 3 3 A M - 0 0 125 1,-0.1 3,-0.1 2,-0.0 0, 0.0 -0.296 61.4-160.7 -69.8 156.1 -42.8 -10.3 5.5 4 4 A A + 0 0 105 1,-0.1 -1,-0.1 3,-0.0 -2,-0.0 -0.091 65.0 98.4-128.6 32.7 -39.0 -10.1 5.2 5 5 A Q + 0 0 160 2,-0.0 2,-0.8 1,-0.0 -1,-0.1 -0.096 48.0 117.9-110.9 33.3 -38.7 -8.7 1.7 6 6 A E - 0 0 151 -3,-0.1 2,-0.6 0, 0.0 -1,-0.0 -0.834 40.6-176.8-105.7 97.8 -38.3 -5.0 2.6 7 7 A T + 0 0 130 -2,-0.8 3,-0.1 1,-0.2 -2,-0.0 -0.841 20.0 150.1 -97.9 122.6 -34.9 -3.8 1.5 8 8 A N + 0 0 124 -2,-0.6 2,-0.3 1,-0.4 -1,-0.2 0.716 67.9 9.5-115.4 -44.8 -34.0 -0.2 2.4 9 9 A Q - 0 0 162 0, 0.0 -1,-0.4 0, 0.0 0, 0.0 -0.971 69.8-121.6-139.4 153.7 -30.2 -0.2 2.7 10 10 A T - 0 0 121 -2,-0.3 2,-0.2 -3,-0.1 -3,-0.0 -0.724 26.2-129.7 -95.9 145.8 -27.3 -2.6 2.0 11 11 A P S S+ 0 0 114 0, 0.0 -1,-0.0 0, 0.0 0, 0.0 -0.526 79.4 50.5 -90.9 160.2 -24.8 -3.8 4.7 12 12 A G - 0 0 49 1,-0.2 2,-1.9 -2,-0.2 -2,-0.0 0.895 61.5-172.2 83.7 44.1 -21.0 -3.8 4.4 13 13 A P - 0 0 94 0, 0.0 2,-3.0 0, 0.0 -1,-0.2 -0.489 4.4-166.5 -72.5 84.4 -20.4 -0.1 3.4 14 14 A M + 0 0 76 -2,-1.9 10,-2.9 10,-0.2 2,-0.1 -0.357 18.8 176.2 -71.7 66.0 -16.7 -0.4 2.7 15 15 A L B -A 23 0A 89 -2,-3.0 8,-0.2 8,-0.2 10,-0.0 -0.474 43.4 -82.4 -75.0 144.9 -16.3 3.4 2.6 16 16 A C > - 0 0 9 6,-2.0 3,-1.0 1,-0.1 5,-0.2 -0.191 31.9-142.1 -49.8 128.1 -12.7 4.8 2.2 17 17 A S T 3 S+ 0 0 96 13,-1.3 -1,-0.1 1,-0.2 14,-0.1 0.798 100.7 59.0 -63.7 -30.2 -10.9 4.8 5.6 18 18 A T T 3 S- 0 0 81 1,-0.0 -1,-0.2 14,-0.0 -2,-0.1 0.712 113.6-118.2 -73.6 -19.0 -9.2 8.1 4.6 19 19 A G < + 0 0 63 -3,-1.0 -2,-0.1 3,-0.1 -4,-0.0 0.882 65.2 142.6 85.0 43.1 -12.7 9.8 4.2 20 20 A C - 0 0 52 2,-0.2 3,-0.1 -4,-0.0 -3,-0.1 0.729 66.6-116.3 -85.7 -22.4 -12.5 10.7 0.5 21 21 A G S S+ 0 0 61 1,-0.4 2,-0.3 -5,-0.2 -6,-0.0 0.518 77.0 110.9 100.3 8.1 -16.3 9.9 -0.0 22 22 A F S S- 0 0 143 1,-0.1 -6,-2.0 0, 0.0 -1,-0.4 -0.780 74.5 -91.5-114.3 159.4 -15.8 7.0 -2.5 23 23 A Y B -A 15 0A 149 -2,-0.3 10,-0.3 -8,-0.2 -8,-0.2 -0.349 42.2-160.4 -67.6 146.7 -16.4 3.3 -2.2 24 24 A G - 0 0 5 -10,-2.9 8,-0.2 8,-0.1 -10,-0.2 -0.590 12.6-119.1-118.4-179.1 -13.5 1.1 -1.0 25 25 A N > - 0 0 65 6,-0.8 5,-1.1 -2,-0.2 6,-0.2 -0.979 1.9-149.4-126.9 138.9 -12.5 -2.6 -1.2 26 26 A P T 5S+ 0 0 89 0, 0.0 -1,-0.1 0, 0.0 5,-0.0 0.766 100.1 59.8 -77.1 -22.6 -11.9 -5.1 1.7 27 27 A R T 5S+ 0 0 230 2,-0.1 -2,-0.0 3,-0.0 0, 0.0 0.871 105.4 56.6 -71.2 -34.1 -9.4 -7.1 -0.4 28 28 A T T 5S- 0 0 46 3,-0.1 4,-0.1 1,-0.1 -4,-0.0 0.188 123.4 -73.9 -74.6-157.5 -7.3 -4.0 -0.7 29 29 A N T 5S- 0 0 85 3,-0.2 3,-0.1 2,-0.2 -1,-0.1 0.071 78.4 -86.3 -90.9 25.4 -6.1 -2.1 2.4 30 30 A G S - 0 0 15 -2,-0.3 4,-0.9 -8,-0.2 -1,-0.2 0.237 47.6 -81.4 -70.0-160.6 -10.4 3.2 -2.7 33 33 A S H > S+ 0 0 109 -10,-0.3 4,-0.8 2,-0.1 -9,-0.1 0.925 125.6 37.6 -74.5 -48.3 -8.4 3.3 -5.9 34 34 A V H >> S+ 0 0 98 2,-0.2 4,-1.7 1,-0.2 3,-1.0 0.969 119.4 44.8 -68.8 -56.9 -6.8 6.7 -5.6 35 35 A C H 3> S+ 0 0 19 1,-0.3 4,-2.7 2,-0.2 5,-0.2 0.826 107.0 61.3 -57.8 -35.3 -6.1 6.6 -1.8 36 36 A Y H 3X S+ 0 0 80 -4,-0.9 4,-1.5 1,-0.2 -1,-0.3 0.817 106.2 47.0 -63.0 -31.1 -4.8 3.1 -2.0 37 37 A K H