==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIPID BINDING PROTEIN 12-JUL-10 2L0Q . COMPND 2 MOLECULE: ACYL CARRIER PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: VIBRIO HARVEYI 1DA3; . AUTHOR D.I.CHAN,B.C.H.CHU,C.K.Y.LAU,H.N.HUNTER,D.M.BYERS,H.J.VOGEL . 80 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5239.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 53 66.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 5.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 3.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 38 47.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 2.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 101 0, 0.0 79,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 160.0 2.1 0.0 -1.2 2 2 A I - 0 0 75 75,-0.1 2,-0.1 2,-0.0 78,-0.0 -0.914 360.0-120.8-112.7 133.2 5.3 1.7 -2.2 3 3 A P >> - 0 0 73 0, 0.0 3,-2.3 0, 0.0 4,-1.5 -0.402 19.2-123.8 -69.8 142.2 5.6 4.7 -4.6 4 4 A L H 3> S+ 0 0 111 1,-0.3 4,-2.3 2,-0.2 5,-0.2 0.767 111.1 68.7 -56.0 -25.2 7.7 4.3 -7.8 5 5 A S H 3> S+ 0 0 88 1,-0.2 4,-1.0 2,-0.2 -1,-0.3 0.772 103.1 43.9 -65.5 -25.8 9.6 7.3 -6.5 6 6 A N H <> S+ 0 0 80 -3,-2.3 4,-2.6 2,-0.2 -2,-0.2 0.918 112.6 47.9 -84.1 -50.1 11.0 5.2 -3.7 7 7 A I H X S+ 0 0 3 -4,-1.5 4,-3.2 1,-0.2 5,-0.4 0.880 108.6 57.6 -58.5 -39.8 11.8 2.0 -5.7 8 8 A E H X S+ 0 0 72 -4,-2.3 4,-2.2 1,-0.2 5,-0.2 0.955 112.3 38.3 -56.0 -54.9 13.6 4.2 -8.3 9 9 A E H X S+ 0 0 126 -4,-1.0 4,-2.5 -5,-0.2 -1,-0.2 0.873 118.7 51.5 -64.9 -37.9 16.0 5.7 -5.8 10 10 A R H X S+ 0 0 93 -4,-2.6 4,-2.2 2,-0.2 -2,-0.2 0.990 112.4 41.8 -62.6 -63.4 16.3 2.4 -4.0 11 11 A V H X S+ 0 0 5 -4,-3.2 4,-2.4 1,-0.2 5,-0.2 0.916 117.9 48.2 -50.3 -49.3 17.1 0.2 -7.0 12 12 A K H X S+ 0 0 8 -4,-2.2 4,-1.9 -5,-0.4 -1,-0.2 0.911 106.8 57.4 -59.3 -44.3 19.4 2.8 -8.4 13 13 A K H X S+ 0 0 121 -4,-2.5 4,-2.0 -5,-0.2 3,-0.3 0.939 109.8 43.5 -52.0 -53.4 21.1 3.3 -5.0 14 14 A I H X S+ 0 0 12 -4,-2.2 4,-2.5 1,-0.2 3,-0.4 0.957 110.4 53.9 -58.2 -54.3 22.1 -0.4 -4.9 15 15 A I H X>S+ 0 0 3 -4,-2.4 4,-2.0 1,-0.3 5,-0.6 0.802 111.5 48.6 -51.1 -30.4 23.2 -0.6 -8.5 16 16 A V H <5S+ 0 0 41 -4,-1.9 -1,-0.3 -3,-0.3 4,-0.3 0.856 110.8 48.0 -78.7 -37.5 25.5 2.4 -7.6 17 17 A E H <5S+ 0 0 153 -4,-2.0 -2,-0.2 -3,-0.4 -1,-0.2 0.761 117.0 44.6 -73.9 -25.5 26.9 0.8 -4.5 18 18 A Q H <5S+ 0 0 82 -4,-2.5 -2,-0.2 -5,-0.2 -3,-0.2 0.915 131.2 18.9 -83.4 -49.1 27.5 -2.4 -6.4 19 19 A L T <5S- 0 0 61 -4,-2.0 -3,-0.2 -5,-0.3 -2,-0.1 0.946 89.9-136.2 -85.8 -62.7 29.1 -0.9 -9.5 20 20 A G < + 0 0 59 -5,-0.6 -4,-0.1 1,-0.3 2,-0.1 0.586 60.3 114.8 112.1 17.7 30.1 2.5 -8.5 21 21 A V S S- 0 0 75 -6,-0.4 2,-0.5 1,-0.1 -1,-0.3 -0.396 76.1 -67.9-106.9-174.3 28.9 4.6 -11.4 22 22 A D > - 0 0 95 1,-0.2 4,-1.1 -2,-0.1 3,-0.4 -0.656 32.6-142.5 -80.9 124.7 26.3 7.3 -12.0 23 23 A E T 4 S+ 0 0 91 -2,-0.5 -1,-0.2 1,-0.2 -10,-0.0 0.778 100.5 63.6 -54.9 -26.9 22.7 6.0 -11.6 24 24 A A T 4 S+ 0 0 61 1,-0.2 -1,-0.2 3,-0.0 -12,-0.0 0.965 96.4 52.5 -62.9 -54.7 21.9 8.3 -14.4 25 25 A E T 4 S+ 0 0 150 -3,-0.4 2,-0.9 2,-0.1 -1,-0.2 0.805 89.4 96.0 -51.9 -30.6 24.0 6.5 -17.0 26 26 A V S < S- 0 0 5 -4,-1.1 2,-0.2 1,-0.0 -1,-0.1 -0.511 72.1-150.5 -67.7 104.2 22.2 3.4 -16.0 27 27 A K - 0 0 126 -2,-0.9 42,-0.2 4,-0.2 43,-0.2 -0.483 11.9-139.7 -77.5 146.6 19.4 3.0 -18.5 28 28 A N S S+ 0 0 53 1,-0.2 42,-1.4 -2,-0.2 43,-0.1 0.914 105.5 45.1 -71.0 -44.5 16.2 1.3 -17.6 29 29 A E S S+ 0 0 141 40,-0.2 -1,-0.2 41,-0.1 42,-0.1 0.769 102.9 86.2 -70.2 -25.9 15.8 -0.6 -20.9 30 30 A A S S- 0 0 13 1,-0.1 39,-1.0 38,-0.1 40,-0.8 -0.211 75.2-129.2 -71.3 165.7 19.5 -1.5 -20.7 31 31 A S B > -A 68 0A 11 37,-0.2 5,-1.2 38,-0.2 37,-0.2 -0.353 23.5-103.9-105.7-172.5 20.8 -4.6 -18.8 32 32 A F T 5S+ 0 0 2 35,-1.2 6,-1.8 3,-0.1 36,-0.1 0.695 119.9 15.3 -86.3 -21.7 23.5 -5.2 -16.2 33 33 A V T 5S+ 0 0 57 34,-0.4 4,-0.3 4,-0.3 35,-0.1 0.655 118.2 66.1-119.3 -36.2 25.8 -6.7 -18.7 34 34 A D T 5S- 0 0 140 2,-0.1 -2,-0.1 3,-0.1 -4,-0.1 0.974 129.5 -0.5 -51.8 -66.6 24.4 -5.7 -22.1 35 35 A D T 5S+ 0 0 104 -4,-0.2 -3,-0.1 -8,-0.1 -1,-0.1 0.898 136.2 53.1 -91.2 -52.8 25.0 -2.0 -21.7 36 36 A L S > - 0 0 123 1,-0.0 4,-1.3 -7,-0.0 3,-1.2 -0.593 37.7 -86.1-114.6 177.3 29.7 -9.7 -15.3 40 40 A S H 3> S+ 0 0 93 1,-0.3 4,-2.4 -2,-0.2 5,-0.2 0.809 125.2 64.6 -52.5 -30.9 27.5 -12.4 -13.8 41 41 A L H 3> S+ 0 0 120 2,-0.2 4,-2.2 1,-0.2 -1,-0.3 0.903 98.9 52.1 -60.2 -42.9 28.7 -11.2 -10.4 42 42 A D H <> S+ 0 0 8 -3,-1.2 4,-2.1 2,-0.2 5,-0.2 0.966 110.3 46.4 -58.3 -56.7 27.0 -7.8 -10.9 43 43 A T H X S+ 0 0 16 -4,-1.3 4,-2.2 1,-0.2 3,-0.3 0.945 113.8 47.9 -51.4 -55.7 23.6 -9.4 -11.8 44 44 A V H X S+ 0 0 80 -4,-2.4 4,-2.3 1,-0.2 5,-0.3 0.866 108.3 57.2 -54.5 -38.7 23.7 -11.8 -8.9 45 45 A E H X S+ 0 0 48 -4,-2.2 4,-2.1 -5,-0.2 -1,-0.2 0.921 107.9 45.7 -59.5 -46.1 24.7 -8.9 -6.6 46 46 A L H X S+ 0 0 6 -4,-2.1 4,-1.9 -3,-0.3 -1,-0.2 0.879 109.9 56.3 -65.3 -38.8 21.6 -7.0 -7.5 47 47 A V H X S+ 0 0 13 -4,-2.2 4,-2.2 2,-0.2 3,-0.5 0.971 111.1 40.6 -57.2 -58.8 19.4 -10.1 -7.1 48 48 A M H X S+ 0 0 76 -4,-2.3 4,-1.4 1,-0.2 5,-0.2 0.901 112.3 57.0 -57.6 -43.1 20.5 -10.8 -3.5 49 49 A A H X S+ 0 0 6 -4,-2.1 4,-3.1 -5,-0.3 5,-0.5 0.847 108.1 48.9 -57.4 -35.3 20.4 -7.0 -2.7 50 50 A L H X>S+ 0 0 8 -4,-1.9 4,-1.3 -3,-0.5 6,-0.9 0.962 112.8 43.5 -69.8 -53.8 16.7 -7.0 -3.8 51 51 A E H <5S+ 0 0 80 -4,-2.2 -1,-0.2 4,-0.2 -2,-0.2 0.639 120.9 46.5 -66.8 -13.1 15.6 -10.0 -1.8 52 52 A E H <5S+ 0 0 107 -4,-1.4 -2,-0.2 -5,-0.3 -1,-0.2 0.869 125.6 24.2 -94.0 -48.6 17.7 -8.5 1.1 53 53 A E H <5S+ 0 0 81 -4,-3.1 -3,-0.2 -5,-0.2 -2,-0.2 0.956 134.4 34.4 -81.6 -59.1 16.5 -4.9 1.0 54 54 A F T <5S- 0 0 40 -4,-1.3 -3,-0.2 -5,-0.5 -1,-0.1 0.575 100.2-136.7 -72.9 -8.4 13.1 -5.2 -0.7 55 55 A D < + 0 0 137 -5,-0.7 -4,-0.2 -6,-0.3 2,-0.2 0.865 48.9 157.4 53.6 38.4 12.7 -8.5 1.1 56 56 A T - 0 0 19 -6,-0.9 2,-1.2 2,-0.0 -1,-0.2 -0.485 52.5-108.3 -91.5 163.8 11.4 -10.0 -2.1 57 57 A E + 0 0 168 -2,-0.2 5,-0.1 -3,-0.1 -1,-0.0 -0.695 50.5 156.6 -94.7 84.9 11.3 -13.6 -3.1 58 58 A I + 0 0 5 -2,-1.2 -7,-0.1 -11,-0.1 -1,-0.1 -0.686 16.6 172.4-111.8 77.8 13.9 -13.8 -5.9 59 59 A P > - 0 0 67 0, 0.0 4,-1.9 0, 0.0 5,-0.2 0.117 54.0 -75.2 -69.8-170.6 15.0 -17.5 -6.0 60 60 A D H > S+ 0 0 136 2,-0.2 4,-1.6 1,-0.2 5,-0.2 0.931 132.5 48.2 -54.9 -49.7 17.2 -19.1 -8.5 61 61 A E H >> S+ 0 0 150 1,-0.2 4,-1.6 2,-0.2 3,-1.4 0.979 115.3 41.5 -55.4 -63.9 14.5 -19.1 -11.2 62 62 A E H 3> S+ 0 0 49 1,-0.3 4,-1.7 2,-0.2 -1,-0.2 0.750 113.5 58.0 -57.0 -23.3 13.4 -15.5 -10.7 63 63 A A H 3< S+ 0 0 29 -4,-1.9 -1,-0.3 2,-0.2 -2,-0.2 0.780 103.8 50.3 -77.7 -28.1 17.2 -14.8 -10.5 64 64 A E H << S+ 0 0 158 -4,-1.6 -2,-0.2 -3,-1.4 -1,-0.2 0.790 115.2 42.6 -79.3 -29.6 17.8 -16.3 -13.9 65 65 A K H < S+ 0 0 113 -4,-1.6 2,-1.4 1,-0.2 -2,-0.2 0.803 104.4 68.2 -85.0 -32.6 15.0 -14.2 -15.5 66 66 A I < + 0 0 6 -4,-1.7 -1,-0.2 -5,-0.2 -19,-0.1 -0.640 57.7 121.7 -91.1 81.2 15.9 -11.0 -13.7 67 67 A T + 0 0 51 -2,-1.4 -35,-1.2 -3,-0.1 -34,-0.4 0.185 60.6 66.8-123.6 12.8 19.2 -10.2 -15.3 68 68 A T B > S-A 31 0A 42 -37,-0.2 4,-3.0 -3,-0.2 -37,-0.2 -0.948 81.5-118.6-135.2 155.3 18.3 -6.7 -16.7 69 69 A V H > S+ 0 0 0 -39,-1.0 4,-3.2 -2,-0.3 5,-0.4 0.968 116.0 45.8 -54.1 -60.6 17.5 -3.3 -15.2 70 70 A Q H > S+ 0 0 77 -42,-1.4 4,-1.8 -40,-0.8 -1,-0.2 0.874 114.5 50.9 -51.3 -40.9 14.0 -3.2 -16.8 71 71 A A H > S+ 0 0 21 2,-0.2 4,-2.2 3,-0.2 -1,-0.2 0.928 114.6 41.9 -64.1 -46.9 13.4 -6.8 -15.6 72 72 A A H X S+ 0 0 2 -4,-3.0 4,-2.2 2,-0.2 5,-0.3 0.971 115.5 47.5 -64.8 -56.2 14.5 -6.0 -12.0 73 73 A I H X S+ 0 0 12 -4,-3.2 4,-2.0 1,-0.2 -1,-0.2 0.827 113.0 52.6 -54.9 -33.0 12.7 -2.7 -11.7 74 74 A D H X S+ 0 0 99 -4,-1.8 4,-1.9 -5,-0.4 -1,-0.2 0.932 109.1 47.5 -69.5 -47.4 9.6 -4.4 -13.2 75 75 A Y H X S+ 0 0 21 -4,-2.2 4,-2.0 2,-0.2 3,-0.4 0.979 117.0 40.8 -57.7 -61.4 9.7 -7.3 -10.7 76 76 A V H < S+ 0 0 1 -4,-2.2 3,-0.4 1,-0.3 -1,-0.2 0.935 115.7 50.8 -53.2 -51.8 10.1 -5.2 -7.6 77 77 A N H < S+ 0 0 62 -4,-2.0 3,-0.4 -5,-0.3 -1,-0.3 0.823 113.2 47.4 -56.7 -32.1 7.7 -2.5 -8.8 78 78 A S H < S+ 0 0 81 -4,-1.9 2,-0.7 -3,-0.4 -1,-0.3 0.762 107.8 57.8 -80.5 -26.8 5.2 -5.4 -9.5 79 79 A H < 0 0 92 -4,-2.0 -1,-0.2 -3,-0.4 -2,-0.1 -0.524 360.0 360.0-103.5 64.3 5.8 -6.9 -6.0 80 80 A Q 0 0 123 -2,-0.7 -3,-0.1 -3,-0.4 -4,-0.0 -0.493 360.0 360.0 -78.3 360.0 4.9 -3.9 -3.9