==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-FEB-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN TRANSPORT 23-JUL-10 2L16 . COMPND 2 MOLECULE: SEC-INDEPENDENT PROTEIN TRANSLOCASE PROTEIN TATAD . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS SUBTILIS; . AUTHOR Y.HU,C.JIN . 52 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4956.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 41 78.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 11.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 35 67.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 165 0, 0.0 4,-0.3 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-121.0 -9.6 -18.0 -19.4 2 2 A F + 0 0 170 1,-0.2 4,-0.2 2,-0.1 7,-0.1 0.467 360.0 52.9 -87.3 -3.2 -6.1 -16.6 -19.0 3 3 A S S S+ 0 0 113 2,-0.1 3,-0.4 1,-0.1 -1,-0.2 0.659 97.7 62.0-102.0 -23.6 -7.3 -14.4 -16.1 4 4 A N S S+ 0 0 147 1,-0.2 -2,-0.1 2,-0.1 -1,-0.1 0.641 89.2 74.3 -76.7 -14.4 -8.9 -17.1 -14.0 5 5 A I S S+ 0 0 76 -4,-0.3 4,-0.3 1,-0.2 -1,-0.2 0.913 71.2 168.7 -64.4 -44.0 -5.5 -18.8 -13.7 6 6 A G > - 0 0 49 -3,-0.4 4,-0.8 -4,-0.2 3,-0.5 -0.407 67.4 -15.3 66.7-137.8 -4.3 -16.2 -11.2 7 7 A I H >> S+ 0 0 105 1,-0.2 3,-1.9 2,-0.2 4,-1.6 0.940 130.0 68.7 -65.9 -47.7 -1.1 -17.2 -9.5 8 8 A P H 3> S+ 0 0 102 0, 0.0 4,-0.9 0, 0.0 -1,-0.2 0.832 103.6 47.1 -39.5 -38.6 -1.2 -20.9 -10.6 9 9 A G H 3> S+ 0 0 15 -3,-0.5 4,-1.7 -4,-0.3 -2,-0.2 0.798 103.5 62.6 -74.8 -30.0 -0.6 -19.6 -14.1 10 10 A L H X S+ 0 0 102 -4,-3.4 4,-1.6 1,-0.2 3,-0.9 0.901 101.9 56.3 -57.6 -41.8 7.9 -18.2 -13.9 15 15 A V H 3X S+ 0 0 70 -4,-2.6 4,-2.6 1,-0.3 5,-0.2 0.899 97.6 62.0 -57.1 -42.5 9.5 -21.5 -14.7 16 16 A I H 3X S+ 0 0 111 -4,-1.2 4,-1.0 1,-0.3 -1,-0.3 0.846 107.1 46.0 -52.7 -33.8 10.1 -20.3 -18.2 17 17 A A H > - 0 0 7 -5,-0.4 3,-1.5 -7,-0.1 4,-1.1 -0.160 20.4-103.5 122.9 142.9 17.6 -20.3 -12.6 23 23 A P T 34 S+ 0 0 92 0, 0.0 -1,-0.1 0, 0.0 5,-0.1 0.677 121.8 56.5 -69.6 -16.3 16.1 -20.4 -9.1 24 24 A S T 34 S+ 0 0 86 -6,-0.1 4,-0.2 2,-0.1 -2,-0.1 0.392 103.1 56.4 -94.2 0.9 19.6 -20.0 -7.7 25 25 A K T <> S+ 0 0 108 -3,-1.5 4,-1.6 2,-0.1 -1,-0.1 0.770 100.0 52.9-100.5 -35.9 20.1 -16.8 -9.7 26 26 A L H X S+ 0 0 62 -4,-1.1 4,-1.6 2,-0.2 -2,-0.1 0.924 111.8 45.6 -69.0 -43.3 17.2 -14.7 -8.5 27 27 A P H > S+ 0 0 57 0, 0.0 4,-2.1 0, 0.0 -1,-0.2 0.845 109.5 57.2 -67.2 -33.0 18.1 -15.2 -4.7 28 28 A E H > S+ 0 0 114 -4,-0.2 4,-2.5 1,-0.2 -2,-0.2 0.893 105.6 49.6 -64.9 -41.0 21.7 -14.4 -5.5 29 29 A I H X S+ 0 0 108 -4,-1.6 4,-3.3 2,-0.2 5,-0.3 0.911 109.5 51.2 -64.9 -43.7 20.8 -11.1 -7.0 30 30 A G H X S+ 0 0 45 -4,-1.6 4,-1.8 2,-0.2 -2,-0.2 0.914 112.4 46.5 -60.5 -43.7 18.7 -10.1 -4.0 31 31 A R H X S+ 0 0 170 -4,-2.1 4,-1.3 2,-0.2 -2,-0.2 0.925 114.6 46.4 -63.9 -46.8 21.5 -11.0 -1.6 32 32 A A H >X S+ 0 0 58 -4,-2.5 4,-1.3 1,-0.2 3,-0.7 0.949 117.1 42.9 -62.2 -48.3 24.1 -9.1 -3.7 33 33 A A H 3X S+ 0 0 35 -4,-3.3 4,-3.5 1,-0.2 5,-0.3 0.794 103.5 71.4 -65.2 -28.5 21.8 -6.1 -4.0 34 34 A G H 3X S+ 0 0 25 -4,-1.8 4,-2.0 -5,-0.3 -1,-0.2 0.893 99.9 43.8 -55.2 -43.0 21.0 -6.6 -0.4 35 35 A R H X S+ 0 0 55 -4,-1.9 4,-0.9 1,-0.2 3,-0.6 0.885 111.9 52.5 -68.8 -38.0 24.1 7.1 3.2 44 44 A T H >X S+ 0 0 70 -4,-2.3 4,-2.4 1,-0.2 3,-0.8 0.886 97.8 64.0 -63.6 -42.3 20.6 8.5 3.1 45 45 A K H 3X S+ 0 0 132 -4,-2.4 4,-2.0 1,-0.3 -1,-0.2 0.824 102.6 51.7 -53.0 -31.4 20.4 8.8 6.9 46 46 A S H