==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-AUG-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 09-AUG-10 2L1X . COMPND 2 MOLECULE: PARATHYROID HORMONE; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR K.LIN,Q.YOU,D.LIN,J.LIU . 39 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3551.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 59.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 7.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 25.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 7 17.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A P 0 0 112 0, 0.0 2,-0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 86.1 -4.7 13.5 12.7 2 2 A P > - 0 0 83 0, 0.0 3,-1.6 0, 0.0 4,-0.2 0.120 360.0 -54.1 -88.8-151.1 -3.1 10.6 14.6 3 3 A S G > S+ 0 0 90 1,-0.3 3,-0.6 2,-0.2 4,-0.1 0.734 130.9 65.3 -65.4 -23.0 -3.0 6.9 13.8 4 4 A V G 3 S+ 0 0 115 1,-0.2 -1,-0.3 2,-0.1 4,-0.2 0.752 115.3 28.8 -70.3 -22.7 -6.8 6.8 13.4 5 5 A S G <>>S+ 0 0 11 -3,-1.6 4,-2.1 2,-0.1 5,-0.9 0.131 82.2 111.0-126.5 21.8 -6.6 9.1 10.4 6 6 A E T <45S+ 0 0 14 -3,-0.6 7,-0.2 3,-0.2 -1,-0.1 0.446 84.0 51.2 -74.6 2.2 -3.2 8.2 9.0 7 7 A I T 45S+ 0 0 84 -3,-0.1 -1,-0.2 -4,-0.1 -2,-0.1 0.843 121.7 22.7 -99.2 -57.4 -5.1 6.7 6.1 8 8 A Q T 45S+ 0 0 105 -4,-0.2 -2,-0.2 1,-0.1 3,-0.1 0.796 134.3 37.9 -85.7 -32.2 -7.5 9.4 5.0 9 9 A L T <5S+ 0 0 110 -4,-2.1 2,-0.7 1,-0.2 -3,-0.2 0.773 117.6 54.5 -87.5 -29.6 -5.6 12.4 6.4 10 10 A M < + 0 0 44 -5,-0.9 -1,-0.2 1,-0.2 5,-0.1 -0.888 48.8 152.4-109.7 104.8 -2.2 10.9 5.5 11 11 A H S S+ 0 0 153 -2,-0.7 -1,-0.2 -3,-0.1 3,-0.1 0.571 73.0 72.0-100.8 -16.1 -1.8 10.0 1.9 12 12 A N S S+ 0 0 115 -3,-0.2 -1,-0.1 1,-0.1 -2,-0.1 0.873 82.4 163.2 -58.7 -39.1 1.9 10.5 2.1 13 13 A R + 0 0 40 -7,-0.2 -2,-0.1 1,-0.1 -1,-0.1 -0.003 29.3 123.8 54.7-154.7 1.7 7.3 4.2 14 14 A G + 0 0 54 -3,-0.1 -1,-0.1 1,-0.1 4,-0.1 0.956 36.6 148.4 63.0 51.3 4.8 5.2 4.9 15 15 A K S S- 0 0 90 -9,-0.1 -1,-0.1 -5,-0.1 -2,-0.1 0.572 74.3 -16.1-101.1 -12.5 4.0 5.6 8.6 16 16 A H S S- 0 0 128 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.098 122.7 -44.4-147.6 -80.9 5.4 2.2 9.9 17 17 A L - 0 0 104 0, 0.0 2,-0.6 0, 0.0 0, 0.0 0.540 59.2-175.5-125.0 -45.4 6.0 -0.3 7.2 18 18 A N >> + 0 0 1 1,-0.2 4,-3.1 -4,-0.1 3,-1.0 0.127 60.1 103.0 69.2 -22.3 2.9 -0.0 5.1 19 19 A S H 3> S+ 0 0 62 -2,-0.6 4,-1.1 1,-0.3 -1,-0.2 0.722 82.2 53.1 -59.9 -18.9 4.1 -3.0 3.0 20 20 A M H 34 S+ 0 0 113 2,-0.2 -1,-0.3 1,-0.1 4,-0.2 0.716 110.2 47.0 -85.6 -24.6 1.5 -4.8 5.0 21 21 A E H X> S+ 0 0 64 -3,-1.0 4,-2.6 2,-0.1 3,-1.3 0.934 108.6 54.2 -75.7 -52.7 -1.1 -2.3 4.0 22 22 A R H 3X S+ 0 0 109 -4,-3.1 4,-2.4 1,-0.3 5,-0.2 0.930 102.8 52.5 -48.3 -64.8 -0.2 -2.3 0.3 23 23 A V H 3< S+ 0 0 65 -4,-1.1 -1,-0.3 1,-0.3 4,-0.2 0.636 115.0 46.4 -53.0 -18.7 -0.5 -6.0 -0.4 24 24 A E H X4 S+ 0 0 96 -3,-1.3 3,-1.1 -4,-0.2 4,-0.4 0.856 111.8 46.4 -89.1 -48.0 -4.0 -5.7 1.2 25 25 A W H >X S+ 0 0 95 -4,-2.6 4,-1.0 1,-0.2 3,-1.0 0.697 93.3 81.6 -71.6 -15.5 -5.2 -2.7 -0.6 26 26 A L H >X S+ 0 0 72 -4,-2.4 4,-2.7 -5,-0.3 3,-0.6 0.913 96.0 45.0 -46.7 -39.5 -4.0 -4.0 -3.8 27 27 A R H <4 S+ 0 0 111 -3,-1.1 6,-1.2 1,-0.3 7,-0.7 0.567 118.8 39.8 -92.7 -9.3 -7.2 -6.1 -3.9 28 28 A K H <4 S+ 0 0 119 -3,-1.0 -1,-0.3 -4,-0.4 -2,-0.2 0.267 131.2 26.1-115.3 7.5 -9.5 -3.2 -2.9 29 29 A K H << S+ 0 0 139 -4,-1.0 -3,-0.2 -3,-0.6 -2,-0.2 0.623 94.7 79.7-136.1 -37.5 -7.7 -0.6 -5.0 30 30 A L S < S- 0 0 120 -4,-2.7 -3,-0.1 -5,-0.5 -4,-0.1 0.904 143.4 -47.1 -48.8 -49.1 -5.8 -2.0 -8.1 31 31 A Q S S- 0 0 101 -5,-0.4 -1,-0.2 -4,-0.0 4,-0.2 0.001 89.9-102.6-157.0 17.9 -9.1 -2.1 -9.7 32 32 A D > - 0 0 50 -6,-0.5 3,-1.9 -7,-0.2 -4,-0.2 0.962 27.6-138.8 38.8 107.9 -10.5 -3.7 -6.6 33 33 A V G > S+ 0 0 55 -6,-1.2 3,-1.1 1,-0.3 -5,-0.1 0.573 91.9 83.1 -71.4 -9.2 -10.8 -7.3 -7.5 34 34 A H G 3 S+ 0 0 126 -7,-0.7 -1,-0.3 1,-0.3 -2,-0.1 0.624 70.6 84.7 -66.6 -9.5 -14.2 -7.6 -5.7 35 35 A N G < + 0 0 46 -3,-1.9 -1,-0.3 1,-0.2 -2,-0.1 0.366 56.9 99.6 -78.8 5.8 -15.7 -6.2 -8.9 36 36 A F S X S+ 0 0 160 -3,-1.1 3,-0.5 1,-0.2 -1,-0.2 0.974 97.3 27.0 -57.2 -57.9 -15.8 -9.6 -10.5 37 37 A P T 3 S+ 0 0 113 0, 0.0 2,-2.1 0, 0.0 -2,-0.2 0.959 118.2 62.0 -63.2 -52.8 -19.6 -10.0 -9.7 38 38 A P T 3 0 0 94 0, 0.0 -2,-0.1 0, 0.0 -3,-0.1 -0.059 360.0 360.0 -64.3 38.9 -20.0 -6.1 -9.8 39 39 A D < 0 0 188 -2,-2.1 -3,-0.1 -3,-0.5 -4,-0.0 -0.830 360.0 360.0 -91.2 360.0 -19.0 -6.1 -13.4