==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=31-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 26-AUG-10 2L2R . COMPND 2 MOLECULE: ANTIMICROBIAL PEPTIDE ECAMP1; . SOURCE 2 ORGANISM_SCIENTIFIC: ECHINOCHLOA CRUS-GALLI; . AUTHOR S.B.NOLDE,N.A.BARINOV,T.A.BALASHOVA,A.S.ARSENIEV,A.A.VASSILE . 37 1 2 2 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3858.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 51.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 37.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 116 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -49.2 15.7 8.7 -34.7 2 2 A S - 0 0 135 2,-0.0 0, 0.0 0, 0.0 0, 0.0 0.826 360.0 -83.5 61.9 32.6 16.9 8.6 -31.1 3 3 A G - 0 0 62 3,-0.0 2,-0.2 0, 0.0 3,-0.0 0.176 59.0 -75.1 59.8 173.8 18.8 5.4 -31.9 4 4 A R S S+ 0 0 215 1,-0.1 -2,-0.0 5,-0.0 0, 0.0 -0.544 89.7 68.6-102.1 168.7 17.2 1.9 -31.8 5 5 A G + 0 0 80 1,-0.2 2,-0.3 -2,-0.2 -1,-0.1 0.937 60.6 134.7 86.5 77.2 16.1 -0.3 -28.9 6 6 A S > - 0 0 58 1,-0.1 4,-2.1 -3,-0.0 -1,-0.2 -0.989 62.1-124.5-155.4 145.5 13.2 1.3 -27.0 7 7 A a H > S+ 0 0 34 -2,-0.3 4,-2.7 1,-0.2 5,-0.2 0.786 110.5 60.1 -59.3 -27.7 9.8 0.1 -25.6 8 8 A R H > S+ 0 0 175 2,-0.2 4,-2.6 1,-0.2 -1,-0.2 0.993 108.0 38.3 -64.2 -64.3 8.2 2.8 -27.7 9 9 A S H > S+ 0 0 47 1,-0.2 4,-2.1 2,-0.2 5,-0.2 0.844 119.1 52.3 -56.2 -34.7 9.3 1.6 -31.1 10 10 A Q H X S+ 0 0 99 -4,-2.1 4,-1.8 2,-0.2 -1,-0.2 0.932 112.8 41.7 -68.0 -47.5 8.8 -2.0 -29.9 11 11 A b H X S+ 0 0 2 -4,-2.7 4,-1.2 2,-0.2 -2,-0.2 0.778 112.9 56.9 -71.2 -26.5 5.2 -1.3 -28.7 12 12 A M H < S+ 0 0 91 -4,-2.6 -2,-0.2 2,-0.2 -1,-0.2 0.935 110.0 41.5 -69.0 -48.6 4.5 0.8 -31.8 13 13 A R H >< S+ 0 0 158 -4,-2.1 3,-1.0 1,-0.2 -2,-0.2 0.853 113.8 53.9 -68.2 -35.7 5.4 -2.1 -34.2 14 14 A R H 3< S+ 0 0 182 -4,-1.8 -1,-0.2 1,-0.3 3,-0.2 0.791 116.6 38.9 -69.3 -27.1 3.6 -4.6 -32.0 15 15 A H T 3< S+ 0 0 30 -4,-1.2 3,-0.3 1,-0.1 -1,-0.3 -0.327 70.3 136.5-118.5 49.2 0.5 -2.4 -32.2 16 16 A E S < S+ 0 0 160 -3,-1.0 -1,-0.1 1,-0.2 -2,-0.1 0.770 77.4 51.2 -65.2 -26.5 0.6 -1.2 -35.8 17 17 A D S S+ 0 0 141 1,-0.2 -1,-0.2 -3,-0.2 -2,-0.1 0.759 127.9 20.2 -81.7 -25.7 -3.1 -1.9 -36.0 18 18 A E > + 0 0 92 -3,-0.3 3,-1.6 -6,-0.2 -1,-0.2 -0.565 62.8 163.3-145.6 75.6 -3.8 0.2 -32.9 19 19 A P G > S+ 0 0 73 0, 0.0 3,-0.7 0, 0.0 4,-0.3 0.563 70.3 78.6 -69.5 -7.6 -1.0 2.6 -32.0 20 20 A W G 3 S+ 0 0 220 1,-0.2 3,-0.2 2,-0.1 4,-0.1 0.643 94.8 46.7 -75.9 -14.8 -3.5 4.4 -29.8 21 21 A R G X> S+ 0 0 90 -3,-1.6 4,-1.1 -6,-0.2 3,-0.6 0.388 82.1 98.4-105.6 0.5 -2.9 1.7 -27.2 22 22 A V H X> S+ 0 0 12 -3,-0.7 4,-3.1 1,-0.2 3,-0.6 0.867 74.6 64.7 -54.3 -39.5 0.9 1.8 -27.5 23 23 A Q H 3> S+ 0 0 140 -4,-0.3 4,-3.2 1,-0.3 -1,-0.2 0.917 98.2 52.8 -50.9 -48.2 1.0 4.0 -24.4 24 24 A E H <> S+ 0 0 125 -3,-0.6 4,-1.3 1,-0.2 -1,-0.3 0.851 113.4 44.9 -57.7 -35.7 -0.4 1.2 -22.2 25 25 A b H + 0 0 146 1,-0.1 4,-1.6 3,-0.1 -1,-0.2 0.962 70.0 156.2 53.0 59.0 9.7 -2.3 -13.8 33 33 A R T 4 + 0 0 194 1,-0.2 -1,-0.1 2,-0.2 -2,-0.1 0.627 60.5 71.8 -87.1 -16.3 12.8 -2.6 -16.0 34 34 A G T 4 S- 0 0 85 1,-0.1 -1,-0.2 0, 0.0 -2,-0.1 0.803 134.2 -48.7 -69.8 -29.2 14.8 -4.3 -13.2 35 35 A G T 4 S+ 0 0 72 -3,-0.2 -2,-0.2 2,-0.1 -1,-0.1 0.321 74.2 176.8 159.4 48.1 12.8 -7.5 -13.5 36 36 A G < 0 0 34 -4,-1.6 -4,-0.0 -5,-0.1 -8,-0.0 -0.074 360.0 360.0 -63.6 168.6 9.0 -6.9 -13.5 37 37 A D 0 0 195 0, 0.0 -1,-0.1 0, 0.0 -2,-0.1 -0.029 360.0 360.0 -81.3 360.0 6.5 -9.7 -14.0