==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=4-MAR-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 14-SEP-10 2L3I . COMPND 2 MOLECULE: AOXKI4A, ANTIMICROBIAL PEPTIDE IN SPIDER VENOM; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.A.VASSILEVSKI,P.V.DUBOVSKII,O.V.SAMSONOVA,N.S.EGOROVA,S.A. . 30 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3936.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 63.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 10.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 13.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 12 40.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 129 0, 0.0 2,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -82.9 -9.3 3.0 3.0 2 2 A I + 0 0 135 1,-0.1 0, 0.0 4,-0.0 0, 0.0 -0.479 360.0 173.8 -86.7 159.2 -9.4 6.7 2.2 3 3 A R + 0 0 203 1,-0.3 -1,-0.1 -2,-0.1 5,-0.1 0.610 59.6 52.9-126.9 -60.5 -8.8 8.3 -1.2 4 4 A a S S- 0 0 21 3,-0.2 2,-2.2 1,-0.1 3,-0.4 -0.396 99.6 -88.1 -81.9 160.6 -9.5 12.0 -1.2 5 5 A P S S- 0 0 114 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 -0.435 93.3 -51.2 -69.8 78.2 -8.0 14.5 1.2 6 6 A K S S+ 0 0 202 -2,-2.2 2,-0.2 1,-0.1 -4,-0.0 0.974 116.4 100.5 51.8 67.1 -10.6 14.2 3.9 7 7 A S - 0 0 48 -3,-0.4 2,-2.0 2,-0.0 3,-0.2 -0.640 66.6-140.2 179.5 117.8 -13.6 14.8 1.7 8 8 A W S S+ 0 0 252 -2,-0.2 -2,-0.0 1,-0.2 0, 0.0 -0.434 82.9 82.0 -82.8 65.0 -16.2 12.4 0.1 9 9 A K + 0 0 154 -2,-2.0 3,-0.2 2,-0.0 -1,-0.2 0.551 45.4 171.7-127.0 -74.7 -16.3 14.3 -3.2 10 10 A a - 0 0 43 -3,-0.2 2,-0.2 1,-0.2 5,-0.0 0.979 41.2-127.7 51.9 71.2 -13.5 13.6 -5.7 11 11 A K > - 0 0 112 1,-0.2 4,-2.9 4,-0.1 5,-0.2 -0.283 12.9-151.5 -51.4 109.2 -14.9 15.5 -8.7 12 12 A A H > S+ 0 0 72 -2,-0.2 4,-2.1 -3,-0.2 5,-0.2 0.869 93.9 54.3 -51.6 -40.1 -14.9 12.9 -11.5 13 13 A F H >> S+ 0 0 169 2,-0.2 4,-2.7 1,-0.2 3,-0.5 0.989 113.3 37.3 -58.6 -65.2 -14.5 15.8 -14.0 14 14 A K H 3> S+ 0 0 135 1,-0.2 4,-2.1 2,-0.2 -1,-0.2 0.823 113.0 62.2 -57.4 -32.0 -11.4 17.4 -12.4 15 15 A Q H 3X S+ 0 0 88 -4,-2.9 4,-0.7 2,-0.2 -1,-0.2 0.918 111.0 36.3 -60.7 -45.4 -10.2 13.9 -11.6 16 16 A R H XX S+ 0 0 204 -4,-2.1 4,-3.0 -3,-0.5 3,-1.0 0.923 112.8 57.5 -74.1 -46.5 -10.0 13.0 -15.3 17 17 A V H 3X S+ 0 0 50 -4,-2.7 4,-2.5 1,-0.3 5,-0.2 0.871 98.0 63.5 -51.7 -40.4 -8.9 16.4 -16.5 18 18 A L H 3< S+ 0 0 118 -4,-2.1 4,-0.4 1,-0.2 -1,-0.3 0.888 114.0 32.5 -52.4 -42.6 -5.9 16.1 -14.2 19 19 A K H XX S+ 0 0 142 -3,-1.0 4,-2.4 -4,-0.7 3,-1.1 0.823 110.4 66.0 -83.9 -34.7 -4.7 13.1 -16.2 20 20 A R H 3X S+ 0 0 172 -4,-3.0 4,-3.0 1,-0.3 5,-0.4 0.901 94.2 59.7 -53.1 -44.7 -6.1 14.4 -19.5 21 21 A L H 3X S+ 0 0 117 -4,-2.5 4,-1.7 1,-0.2 -1,-0.3 0.831 110.7 43.1 -54.1 -33.4 -3.6 17.3 -19.4 22 22 A L H <> S+ 0 0 85 -3,-1.1 4,-2.5 -4,-0.4 5,-0.3 0.963 112.4 48.4 -77.4 -57.1 -0.8 14.7 -19.4 23 23 A A H X S+ 0 0 71 -4,-2.4 4,-1.0 1,-0.2 -2,-0.2 0.865 120.1 41.0 -51.0 -39.8 -2.2 12.3 -22.0 24 24 A M H < S+ 0 0 129 -4,-3.0 -1,-0.2 -5,-0.3 -2,-0.2 0.893 109.0 59.1 -76.5 -42.2 -2.8 15.2 -24.3 25 25 A L H >< S+ 0 0 106 -4,-1.7 3,-1.5 -5,-0.4 -2,-0.2 0.931 106.6 47.5 -51.9 -51.3 0.5 17.0 -23.4 26 26 A R H 3< S+ 0 0 211 -4,-2.5 -1,-0.2 1,-0.3 -2,-0.2 0.878 114.2 47.8 -58.9 -39.3 2.5 14.0 -24.6 27 27 A Q T 3< S+ 0 0 165 -4,-1.0 -1,-0.3 -5,-0.3 -2,-0.2 -0.141 86.1 168.2 -94.8 37.7 0.5 13.9 -27.8 28 28 A H < - 0 0 149 -3,-1.5 2,-0.9 1,-0.1 -3,-0.1 -0.157 35.1-129.3 -51.8 143.5 0.8 17.6 -28.4 29 29 A A 0 0 84 1,-0.2 -1,-0.1 -5,-0.0 -2,-0.1 -0.811 360.0 360.0-103.1 95.6 -0.3 18.8 -31.8 30 30 A F 0 0 256 -2,-0.9 -1,-0.2 0, 0.0 -2,-0.0 0.981 360.0 360.0 -55.2 360.0 2.4 20.9 -33.3