==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-OCT-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 05-OCT-10 2L4E . COMPND 2 MOLECULE: DEFECTIVE IN CULLIN NEDDYLATION PROTEIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR D.BURSCHOWSKY,F.RUDOLF,D.MATTLE,M.PETER,G.WIDER . 57 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4688.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 28 49.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 14.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 18 31.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 6 A I 0 0 93 0, 0.0 6,-0.2 0, 0.0 13,-0.1 0.000 360.0 360.0 360.0 6.9 14.0 -1.8 -8.3 2 7 A K + 0 0 166 4,-0.1 9,-0.0 9,-0.0 0, 0.0 -0.112 360.0 143.4-116.6 31.7 17.2 -3.9 -7.9 3 8 A R S > S- 0 0 106 1,-0.1 3,-1.6 4,-0.1 0, 0.0 -0.064 70.4 -98.1 -67.0 169.7 19.6 -1.0 -8.3 4 9 A K T 3 S+ 0 0 224 1,-0.3 -1,-0.1 3,-0.0 -2,-0.0 0.242 127.8 46.4 -74.0 13.1 22.9 -0.6 -6.5 5 10 A D T 3 S+ 0 0 106 2,-0.1 -1,-0.3 0, 0.0 -2,-0.0 0.198 90.5 116.6-134.1 7.7 21.0 1.8 -4.1 6 11 A A < - 0 0 34 -3,-1.6 -4,-0.1 4,-0.0 3,-0.0 -0.230 41.2-167.7 -79.5 167.2 17.9 -0.4 -3.6 7 12 A S > - 0 0 34 -6,-0.2 4,-1.3 1,-0.0 5,-0.1 -0.896 38.7-102.3-147.1 170.8 16.6 -1.9 -0.3 8 13 A P T 4 S+ 0 0 100 0, 0.0 4,-0.3 0, 0.0 5,-0.0 0.809 126.6 46.1 -71.5 -29.3 14.0 -4.6 0.7 9 14 A E T >> S+ 0 0 58 1,-0.2 4,-2.6 2,-0.2 3,-0.7 0.794 107.9 57.9 -78.5 -31.7 11.7 -1.8 1.7 10 15 A Q H 3> S+ 0 0 50 1,-0.2 4,-2.0 2,-0.2 -1,-0.2 0.792 98.4 59.5 -68.2 -28.8 12.5 0.0 -1.6 11 16 A E H 3< S+ 0 0 70 -4,-1.3 -1,-0.2 1,-0.2 -2,-0.2 0.711 117.4 31.9 -74.5 -18.1 11.3 -3.0 -3.5 12 17 A A H <> S+ 0 0 11 -3,-0.7 4,-0.8 -4,-0.3 -2,-0.2 0.682 119.9 50.7-105.0 -28.4 7.9 -2.6 -1.9 13 18 A I H X S+ 0 0 9 -4,-2.6 4,-2.5 2,-0.2 -3,-0.2 0.836 104.4 56.1 -80.7 -35.1 7.8 1.2 -1.5 14 19 A E H < S+ 0 0 53 -4,-2.0 -1,-0.2 1,-0.2 -3,-0.1 0.718 113.1 43.4 -72.1 -18.2 8.7 2.0 -5.1 15 20 A S H > S+ 0 0 43 -5,-0.2 4,-0.7 2,-0.1 -1,-0.2 0.656 111.9 53.0 -94.8 -22.6 5.7 -0.0 -6.2 16 21 A F H >X S+ 0 0 0 -4,-0.8 4,-1.3 2,-0.2 3,-0.7 0.918 110.2 46.7 -74.7 -46.2 3.4 1.4 -3.5 17 22 A T H 3< S+ 0 0 36 -4,-2.5 -1,-0.2 1,-0.2 -2,-0.1 0.520 110.5 56.5 -72.5 -6.6 4.2 5.0 -4.5 18 23 A S H 34 S+ 0 0 90 -5,-0.2 -1,-0.2 1,-0.1 -2,-0.2 0.690 113.1 37.6 -93.7 -23.6 3.6 3.8 -8.1 19 24 A L H << S+ 0 0 106 -4,-0.7 2,-0.3 -3,-0.7 -2,-0.2 0.480 126.5 36.8-105.8 -10.1 0.1 2.6 -7.5 20 25 A T S < S- 0 0 7 -4,-1.3 7,-0.0 2,-0.1 22,-0.0 -0.813 73.1-135.8-128.8 173.1 -0.8 5.4 -5.1 21 26 A K + 0 0 195 -2,-0.3 -4,-0.1 -3,-0.0 -3,-0.0 0.020 66.7 111.3-122.1 25.1 0.2 9.1 -5.1 22 27 A C S S- 0 0 40 -6,-0.2 -2,-0.1 1,-0.1 0, 0.0 -0.077 77.8 -77.2 -81.5-171.6 1.1 9.5 -1.4 23 28 A D >> - 0 0 95 1,-0.1 3,-1.8 -2,-0.0 4,-1.1 -0.681 32.5-123.0 -92.1 146.6 4.6 10.1 -0.0 24 29 A P H 3> S+ 0 0 60 0, 0.0 4,-1.6 0, 0.0 5,-0.2 0.780 111.2 65.9 -58.1 -27.4 7.1 7.2 0.3 25 30 A K H 3> S+ 0 0 145 1,-0.2 4,-0.6 2,-0.2 -12,-0.0 0.748 103.2 45.5 -68.2 -24.8 7.3 7.9 4.0 26 31 A V H <> S+ 0 0 44 -3,-1.8 4,-1.6 2,-0.2 -1,-0.2 0.707 104.5 62.6 -87.1 -25.6 3.7 6.8 4.3 27 32 A S H < S+ 0 0 0 -4,-1.1 -2,-0.2 2,-0.2 -1,-0.1 0.875 101.4 51.5 -68.0 -37.6 4.3 3.7 2.2 28 33 A R H >X S+ 0 0 71 -4,-1.6 4,-1.4 1,-0.2 3,-1.0 0.872 111.3 48.1 -62.4 -39.1 6.8 2.4 4.8 29 34 A K H 3< S+ 0 0 128 -4,-0.6 -2,-0.2 1,-0.3 -1,-0.2 0.769 108.0 54.7 -75.0 -28.4 4.1 2.9 7.5 30 35 A Y T 3< S+ 0 0 21 -4,-1.6 -1,-0.3 1,-0.2 -2,-0.2 0.151 113.0 43.2 -91.4 17.5 1.5 1.2 5.3 31 36 A L T X4>S+ 0 0 0 -3,-1.0 5,-2.2 5,-0.1 3,-1.4 0.469 97.5 70.1-127.4 -23.4 3.7 -1.9 5.0 32 37 A Q T 3<5S+ 0 0 118 -4,-1.4 -2,-0.1 1,-0.2 -3,-0.1 0.288 101.1 54.1 -72.4 9.1 4.9 -2.1 8.7 33 38 A R T 3 5S+ 0 0 128 1,-0.0 -1,-0.2 0, 0.0 -3,-0.1 0.141 112.2 36.5-129.1 14.6 1.3 -3.1 9.3 34 39 A N T X 5S- 0 0 16 -3,-1.4 3,-1.1 0, 0.0 -2,-0.1 0.072 114.9 -91.9-160.2 29.2 0.9 -6.1 6.9 35 40 A H T 3 5S- 0 0 175 1,-0.2 -3,-0.2 -4,-0.1 6,-0.1 0.763 78.7 -70.2 60.3 26.8 4.2 -8.0 6.8 36 41 A W T 3 S+ 0 0 29 -2,-0.6 4,-1.3 1,-0.3 3,-0.4 0.699 94.2 60.7 -68.8 -17.4 1.9 -4.8 -1.3 39 44 A N T 34 S+ 0 0 131 1,-0.2 -1,-0.3 2,-0.2 -2,-0.0 0.465 114.2 35.1 -86.3 -1.7 -1.1 -7.1 -2.0 40 45 A Y T <4 S+ 0 0 174 -3,-1.6 -1,-0.2 -6,-0.1 -2,-0.2 0.105 118.1 52.8-132.7 13.1 -2.2 -6.6 1.6 41 46 A A T > S+ 0 0 0 -3,-0.4 4,-0.9 2,-0.1 -3,-0.2 0.645 98.0 57.3-121.2 -35.5 -1.1 -3.0 2.0 42 47 A L H X S+ 0 0 15 -4,-1.3 4,-2.0 1,-0.2 3,-0.2 0.822 103.5 57.4 -69.6 -31.1 -2.7 -1.1 -0.9 43 48 A N H > S+ 0 0 79 1,-0.2 4,-0.5 2,-0.2 -1,-0.2 0.863 101.7 54.3 -68.3 -36.8 -6.1 -2.3 0.3 44 49 A D H > S+ 0 0 34 1,-0.2 4,-0.7 2,-0.2 -1,-0.2 0.783 112.1 45.2 -67.7 -26.2 -5.6 -0.7 3.7 45 50 A Y H X S+ 0 0 31 -4,-0.9 4,-2.4 2,-0.2 -2,-0.2 0.791 109.9 53.5 -83.1 -32.9 -4.8 2.6 1.9 46 51 A Y H < S+ 0 0 90 -4,-2.0 -2,-0.2 1,-0.2 -1,-0.2 0.498 112.7 46.7 -78.3 -4.8 -7.9 2.1 -0.4 47 52 A D H < S+ 0 0 119 -4,-0.5 -1,-0.2 -5,-0.1 -2,-0.2 0.650 127.4 22.6-102.0 -24.6 -10.0 1.7 2.8 48 53 A K H < S+ 0 0 104 -4,-0.7 -2,-0.2 -5,-0.1 -3,-0.2 0.541 134.1 27.0-123.6 -14.7 -8.6 4.7 4.7 49 54 A E S < S+ 0 0 108 -4,-2.4 -3,-0.2 -5,-0.1 -4,-0.1 0.206 78.8 140.2-137.0 11.2 -7.1 7.2 2.1 50 55 A I - 0 0 79 -5,-0.2 -4,-0.1 1,-0.1 3,-0.0 -0.286 51.3-136.2 -65.0 146.6 -9.1 6.5 -1.1 51 56 A G S S+ 0 0 86 2,-0.0 2,-0.3 1,-0.0 -1,-0.1 0.496 82.3 21.4 -83.2 -5.1 -10.1 9.5 -3.2 52 57 A T - 0 0 86 1,-0.1 3,-0.1 3,-0.0 -3,-0.1 -0.968 45.5-170.2-156.0 164.9 -13.7 8.3 -3.8 53 58 A F S S+ 0 0 200 -2,-0.3 2,-0.3 1,-0.3 -1,-0.1 0.359 73.5 38.9-140.0 -3.2 -16.4 6.0 -2.4 54 59 A T - 0 0 76 3,-0.1 -1,-0.3 1,-0.0 0, 0.0 -0.971 39.9-174.6-148.9 159.6 -19.1 5.9 -5.1 55 60 A D S S+ 0 0 142 -2,-0.3 -1,-0.0 -3,-0.1 -3,-0.0 0.104 74.3 81.8-141.3 16.9 -19.5 5.9 -8.9 56 61 A E 0 0 171 0, 0.0 -2,-0.0 0, 0.0 0, 0.0 0.341 360.0 360.0-106.6 3.7 -23.3 6.2 -9.2 57 62 A V 0 0 158 0, 0.0 -3,-0.1 0, 0.0 0, 0.0 -0.940 360.0 360.0-137.8 360.0 -23.4 10.0 -8.8