==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=2-OCT-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 05-OCT-10 2L4F . COMPND 2 MOLECULE: DEFECTIVE IN CULLIN NEDDYLATION PROTEIN 1; . SOURCE 2 ORGANISM_SCIENTIFIC: SACCHAROMYCES CEREVISIAE; . AUTHOR D.BURSCHOWSKY,D.MATTLE,F.RUDOLF,M.PETER,G.WIDER . 57 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4645.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 33 57.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 10 17.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 35.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 6 A I 0 0 142 0, 0.0 2,-0.4 0, 0.0 5,-0.1 0.000 360.0 360.0 360.0 91.6 18.7 -3.3 0.2 2 7 A K - 0 0 176 5,-0.2 5,-0.1 1,-0.1 0, 0.0 -0.516 360.0-157.0 -64.4 121.1 17.8 -1.6 -3.0 3 8 A R - 0 0 176 -2,-0.4 -1,-0.1 1,-0.0 4,-0.0 -0.050 47.5-105.3 -90.1 29.6 17.8 -4.2 -5.8 4 9 A K S S+ 0 0 205 1,-0.2 -2,-0.1 0, 0.0 -1,-0.0 0.621 115.5 37.5 52.3 18.8 18.4 -1.3 -8.3 5 10 A D S S+ 0 0 144 0, 0.0 2,-0.2 0, 0.0 -1,-0.2 0.339 126.1 14.3-158.6 -38.7 14.7 -1.7 -9.3 6 11 A A - 0 0 27 -5,-0.1 5,-0.1 5,-0.0 0, 0.0 -0.703 64.8-150.1-158.9 101.8 12.6 -2.5 -6.2 7 12 A S > - 0 0 15 -2,-0.2 4,-1.6 -5,-0.1 -5,-0.2 -0.002 40.7 -98.3 -50.7 165.5 13.7 -2.1 -2.6 8 13 A P T 4 S+ 0 0 69 0, 0.0 -1,-0.1 0, 0.0 -6,-0.1 0.754 131.5 33.8 -64.3 -24.9 12.2 -4.4 0.1 9 14 A E T >> S+ 0 0 93 2,-0.1 4,-3.6 3,-0.1 3,-1.8 0.820 114.7 55.8 -92.6 -45.8 9.9 -1.5 0.8 10 15 A Q H 3> S+ 0 0 51 1,-0.3 4,-0.9 2,-0.2 5,-0.3 0.616 94.2 69.4 -69.4 -13.5 9.5 -0.2 -2.8 11 16 A E H 3< S+ 0 0 130 -4,-1.6 -1,-0.3 3,-0.1 -2,-0.1 0.660 118.8 22.1 -78.9 -14.5 8.4 -3.6 -4.0 12 17 A A H <> S+ 0 0 8 -3,-1.8 4,-2.5 -5,-0.1 -2,-0.2 0.715 126.3 50.1-108.7 -49.8 5.2 -2.9 -2.0 13 18 A I H X S+ 0 0 5 -4,-3.6 4,-3.4 1,-0.2 5,-0.3 0.922 114.3 42.3 -58.6 -50.7 5.2 0.9 -1.7 14 19 A E H X S+ 0 0 90 -4,-0.9 4,-0.6 1,-0.2 -1,-0.2 0.767 118.4 47.1 -72.7 -21.0 5.8 1.7 -5.4 15 20 A S H > S+ 0 0 67 -5,-0.3 4,-0.7 2,-0.1 -1,-0.2 0.812 120.9 38.5 -82.5 -32.2 3.3 -1.0 -6.4 16 21 A F H X S+ 0 0 0 -4,-2.5 4,-1.7 2,-0.2 3,-0.5 0.952 114.9 49.4 -81.3 -58.2 0.8 0.2 -3.8 17 22 A T H < S+ 0 0 13 -4,-3.4 4,-0.4 1,-0.3 5,-0.2 0.732 114.9 47.2 -58.4 -26.9 1.3 4.0 -4.2 18 23 A S H < S+ 0 0 84 -4,-0.6 -1,-0.3 -5,-0.3 -2,-0.2 0.771 113.7 47.4 -83.0 -28.5 1.0 3.6 -8.0 19 24 A L H < S+ 0 0 94 -4,-0.7 -2,-0.2 -3,-0.5 -3,-0.1 0.617 123.4 34.1 -83.9 -14.9 -2.1 1.4 -7.6 20 25 A T S < S- 0 0 15 -4,-1.7 -3,-0.2 2,-0.1 -2,-0.2 0.352 98.6-133.4-121.9 -0.7 -3.7 3.9 -5.1 21 26 A K + 0 0 174 -4,-0.4 -3,-0.2 -5,-0.3 -4,-0.1 0.594 64.2 125.8 63.5 11.8 -2.3 7.1 -6.6 22 27 A C S S- 0 0 30 -5,-0.2 -1,-0.2 -6,-0.2 -2,-0.1 -0.129 70.4 -76.6 -87.0-172.6 -1.3 8.3 -3.1 23 28 A D >> - 0 0 74 1,-0.1 3,-2.4 -3,-0.1 4,-1.4 -0.663 39.8-116.9 -86.2 145.6 2.2 9.4 -1.8 24 29 A P H 3> S+ 0 0 54 0, 0.0 4,-1.5 0, 0.0 -1,-0.1 0.721 115.5 59.1 -54.6 -23.8 4.8 6.7 -1.1 25 30 A K H 34 S+ 0 0 129 2,-0.2 4,-0.2 1,-0.2 -12,-0.0 0.597 101.9 53.7 -83.9 -12.1 4.8 7.7 2.6 26 31 A V H X> S+ 0 0 41 -3,-2.4 3,-0.9 2,-0.2 4,-0.8 0.831 105.6 51.5 -86.0 -39.0 1.1 6.9 2.8 27 32 A S H >X S+ 0 0 0 -4,-1.4 4,-2.2 1,-0.3 3,-1.2 0.934 105.6 58.5 -57.8 -44.7 1.6 3.4 1.4 28 33 A R H 3X S+ 0 0 116 -4,-1.5 4,-0.9 1,-0.3 -1,-0.3 0.698 106.5 48.0 -55.7 -23.9 4.3 3.1 4.1 29 34 A K H <4 S+ 0 0 118 -3,-0.9 -1,-0.3 2,-0.2 -2,-0.2 0.554 114.2 42.9-102.5 -6.5 1.7 3.8 6.8 30 35 A Y H << S+ 0 0 34 -3,-1.2 -2,-0.2 -4,-0.8 -3,-0.1 0.541 114.3 52.4-103.1 -16.2 -0.9 1.3 5.5 31 36 A L H ><>S+ 0 0 0 -4,-2.2 5,-3.3 -5,-0.2 3,-1.5 0.851 105.2 54.1 -80.2 -39.6 1.8 -1.3 4.9 32 37 A Q T 3<5S+ 0 0 103 -4,-0.9 3,-0.3 -5,-0.3 -1,-0.2 0.623 104.5 57.8 -68.0 -11.8 3.0 -0.8 8.5 33 38 A R T 3 5S+ 0 0 142 1,-0.2 -1,-0.3 4,-0.1 -2,-0.2 0.576 116.6 32.7 -87.5 -12.8 -0.6 -1.6 9.5 34 39 A N T X 5S- 0 0 29 -3,-1.5 3,-2.0 -4,-0.1 7,-0.2 -0.141 116.8 -96.7-141.2 36.3 -0.5 -4.9 7.8 35 40 A H T 3 5S- 0 0 146 -3,-0.3 -3,-0.2 1,-0.3 3,-0.1 0.843 79.7 -64.5 47.7 42.3 3.1 -6.2 8.1 36 41 A W T 3 - 0 0 49 -3,-2.0 4,-2.4 -6,-0.4 -1,-0.2 -0.866 36.3-155.8 -91.7 118.2 1.3 -7.3 3.0 38 43 A I H > S+ 0 0 52 -2,-0.6 4,-0.8 1,-0.2 -1,-0.1 0.723 89.7 49.7 -73.8 -18.2 0.2 -5.5 -0.1 39 44 A N H > S+ 0 0 94 2,-0.2 4,-1.3 3,-0.1 -1,-0.2 0.891 115.7 41.1 -84.7 -41.8 -3.2 -7.4 -0.3 40 45 A Y H > S+ 0 0 115 1,-0.2 4,-1.5 -6,-0.2 -2,-0.2 0.844 115.7 51.9 -70.7 -36.9 -4.1 -6.8 3.3 41 46 A A H X S+ 0 0 0 -4,-2.4 4,-1.8 -7,-0.2 -1,-0.2 0.766 106.7 53.5 -73.1 -26.8 -2.9 -3.2 3.1 42 47 A L H X S+ 0 0 21 -4,-0.8 4,-2.1 2,-0.2 -1,-0.2 0.855 108.4 48.8 -76.6 -34.7 -5.0 -2.5 0.0 43 48 A N H < S+ 0 0 102 -4,-1.3 4,-0.3 2,-0.2 -2,-0.2 0.855 112.3 49.4 -71.0 -34.4 -8.2 -3.7 1.7 44 49 A D H < S+ 0 0 21 -4,-1.5 3,-0.4 2,-0.2 4,-0.4 0.893 112.6 46.5 -70.9 -40.4 -7.4 -1.5 4.7 45 50 A Y H >X>S+ 0 0 20 -4,-1.8 4,-2.8 1,-0.2 3,-0.9 0.875 111.5 50.9 -69.0 -37.6 -6.7 1.5 2.6 46 51 A Y T 3<5S+ 0 0 94 -4,-2.1 -1,-0.2 1,-0.2 -2,-0.2 0.578 107.7 56.3 -73.2 -9.0 -9.9 0.8 0.6 47 52 A D T 345S+ 0 0 106 -3,-0.4 -1,-0.2 -4,-0.3 -2,-0.2 0.556 117.5 32.4 -92.3 -11.9 -11.6 0.6 4.0 48 53 A K T <45S+ 0 0 71 -3,-0.9 -2,-0.2 -4,-0.4 -3,-0.1 0.744 133.1 22.3-111.7 -38.8 -10.4 4.2 4.9 49 54 A E T <5S+ 0 0 101 -4,-2.8 3,-0.3 -5,-0.1 -3,-0.2 0.780 135.0 30.9-105.6 -37.8 -10.3 6.1 1.6 50 55 A I S > + 0 0 75 1,-0.2 3,-0.9 2,-0.1 -1,-0.3 -0.003 52.9 111.8 -74.4 32.4 -21.5 7.0 0.0 55 60 A D G 3 S+ 0 0 148 -2,-1.1 -1,-0.2 -3,-0.4 -2,-0.1 0.427 83.5 42.6 -85.4 -0.2 -21.1 10.8 0.6 56 61 A E G < 0 0 182 -3,-0.6 -1,-0.2 0, 0.0 -2,-0.1 -0.041 360.0 360.0-131.1 24.6 -23.5 11.3 -2.3 57 62 A V < 0 0 151 -3,-0.9 -2,-0.2 0, 0.0 -3,-0.1 0.663 360.0 360.0-127.2 360.0 -26.0 8.6 -1.4