==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=11-SEP-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER APOPTOSIS 29-OCT-10 2L5B . COMPND 2 MOLECULE: ACTIVATOR OF APOPTOSIS HARAKIRI; . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.BARRERA-VILARMAU,P.OBREGON,E.DE ALBA . 31 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3103.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 64.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 51.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A A > 0 0 129 0, 0.0 3,-0.7 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 70.7 22.6 7.6 1.0 2 2 A P T 3 + 0 0 129 0, 0.0 2,-2.1 0, 0.0 3,-0.1 0.325 360.0 69.8 -62.4-157.2 24.1 4.2 0.1 3 3 A G T 3 S+ 0 0 81 1,-0.2 0, 0.0 2,-0.0 0, 0.0 -0.031 83.5 99.4 72.6 -41.5 25.9 2.1 2.7 4 4 A A S < S- 0 0 65 -2,-2.1 -1,-0.2 -3,-0.7 0, 0.0 -0.013 76.0-129.1 -65.2-179.0 22.4 1.4 4.2 5 5 A L - 0 0 150 -3,-0.1 -1,-0.1 0, 0.0 2,-0.1 -0.569 23.4-168.9-135.4 71.9 20.5 -1.9 3.4 6 6 A P + 0 0 92 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.362 26.8 144.5 -62.3 136.3 17.0 -1.0 2.2 7 7 A T + 0 0 123 -2,-0.1 0, 0.0 2,-0.0 0, 0.0 0.057 56.4 65.1-164.4 34.2 14.8 -4.1 2.1 8 8 A Y > + 0 0 135 2,-0.1 4,-0.9 3,-0.0 0, 0.0 0.142 65.2 101.4-147.4 18.7 11.2 -3.0 3.1 9 9 A W H > S+ 0 0 158 2,-0.2 4,-3.5 1,-0.2 5,-0.3 0.911 74.0 61.5 -75.1 -43.4 10.2 -0.6 0.3 10 10 A P H > S+ 0 0 103 0, 0.0 4,-1.9 0, 0.0 5,-0.2 0.897 107.2 44.3 -54.0 -43.7 7.9 -3.1 -1.6 11 11 A W H > S+ 0 0 159 2,-0.2 4,-2.3 1,-0.2 -2,-0.2 0.871 116.0 49.7 -70.3 -32.1 5.5 -3.6 1.3 12 12 A L H X S+ 0 0 75 -4,-0.9 4,-2.0 2,-0.2 5,-0.2 0.965 109.4 48.3 -70.7 -51.0 5.6 0.2 1.9 13 13 A C H X S+ 0 0 63 -4,-3.5 4,-1.9 1,-0.2 5,-0.2 0.935 116.4 45.7 -56.1 -40.8 4.8 1.1 -1.8 14 14 A A H X S+ 0 0 44 -4,-1.9 4,-3.0 -5,-0.3 5,-0.3 0.913 107.3 57.9 -68.2 -39.2 2.0 -1.5 -1.6 15 15 A A H X S+ 0 0 36 -4,-2.3 4,-0.9 -5,-0.2 -1,-0.2 0.845 106.8 50.5 -60.2 -30.2 0.9 -0.1 1.8 16 16 A A H X S+ 0 0 67 -4,-2.0 4,-1.4 2,-0.2 -2,-0.2 0.972 117.2 35.5 -73.3 -54.6 0.5 3.3 0.0 17 17 A Q H X S+ 0 0 138 -4,-1.9 4,-3.0 1,-0.2 3,-0.5 0.952 114.7 56.7 -65.6 -46.1 -1.6 2.2 -2.9 18 18 A V H X S+ 0 0 92 -4,-3.0 4,-2.0 1,-0.3 -1,-0.2 0.855 105.9 53.8 -54.5 -30.5 -3.5 -0.4 -0.8 19 19 A A H X S+ 0 0 61 -4,-0.9 4,-1.1 -5,-0.3 -1,-0.3 0.891 112.1 42.8 -72.5 -37.0 -4.4 2.5 1.4 20 20 A A H X S+ 0 0 65 -4,-1.4 4,-2.0 -3,-0.5 5,-0.2 0.962 119.6 41.2 -73.9 -51.1 -5.9 4.5 -1.5 21 21 A L H X S+ 0 0 96 -4,-3.0 4,-3.1 1,-0.2 5,-0.4 0.973 114.6 51.6 -61.9 -51.6 -7.7 1.5 -3.1 22 22 A A H X S+ 0 0 47 -4,-2.0 4,-1.7 -5,-0.4 -1,-0.2 0.868 108.3 54.9 -54.4 -33.4 -8.9 0.2 0.2 23 23 A A H < S+ 0 0 66 -4,-1.1 4,-0.5 -5,-0.2 -1,-0.2 0.962 115.7 35.3 -66.9 -49.1 -10.2 3.7 1.0 24 24 A W H >X S+ 0 0 174 -4,-2.0 3,-2.5 1,-0.2 4,-0.7 0.976 117.9 51.4 -68.3 -53.6 -12.4 3.9 -2.2 25 25 A L H >< S+ 0 0 51 -4,-3.1 3,-0.8 1,-0.3 -1,-0.2 0.845 98.5 67.5 -53.4 -32.8 -13.3 0.2 -2.2 26 26 A L T 3< S+ 0 0 124 -4,-1.7 -1,-0.3 -5,-0.4 -2,-0.2 0.813 90.7 65.0 -60.4 -24.1 -14.4 0.6 1.4 27 27 A G T <4 S+ 0 0 65 -3,-2.5 -1,-0.3 -4,-0.5 -2,-0.2 0.917 104.5 46.0 -65.7 -39.7 -17.2 2.8 -0.1 28 28 A R << + 0 0 96 -3,-0.8 -2,-0.1 -4,-0.7 -3,-0.1 0.779 56.2 128.0 -68.5-112.5 -18.7 -0.3 -1.8 29 29 A R + 0 0 129 -4,-0.2 -1,-0.1 1,-0.1 -3,-0.1 0.904 56.9 93.9 58.1 39.7 -19.0 -3.4 0.4 30 30 A N 0 0 124 1,-0.0 -1,-0.1 0, 0.0 -2,-0.0 0.146 360.0 360.0-144.1 16.6 -22.6 -3.6 -0.6 31 31 A L 0 0 166 0, 0.0 -2,-0.0 0, 0.0 -3,-0.0 -0.011 360.0 360.0 -71.6 360.0 -22.5 -6.0 -3.6