==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=20-FEB-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE 12-NOV-10 2L63 . COMPND 2 MOLECULE: GLUCAGON-LIKE PEPTIDE 2; . SOURCE 2 SYNTHETIC: YES; . AUTHOR K.C.VENNETI,C.M.HEWAGE . 33 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3608.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 26 78.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 7 21.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 17 51.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A H 0 0 247 0, 0.0 2,-0.2 0, 0.0 7,-0.0 0.000 360.0 360.0 360.0 160.2 0.6 -11.8 -10.8 2 2 A A - 0 0 49 2,-0.0 2,-0.3 6,-0.0 6,-0.1 -0.796 360.0-162.7-126.0 169.0 -0.8 -14.4 -8.3 3 3 A D + 0 0 145 -2,-0.2 2,-0.2 0, 0.0 4,-0.1 -0.905 42.7 53.8-158.5 126.1 -3.8 -16.8 -8.6 4 4 A G S > S- 0 0 37 -2,-0.3 4,-1.5 1,-0.1 5,-0.1 -0.593 84.9 -76.0 132.7 165.5 -5.8 -18.8 -6.0 5 5 A S H > S+ 0 0 111 -2,-0.2 4,-0.6 2,-0.2 -1,-0.1 0.992 127.2 11.5 -63.1 -68.8 -7.7 -18.2 -2.7 6 6 A F H 4 S+ 0 0 150 1,-0.2 3,-0.4 2,-0.2 4,-0.3 0.788 119.1 72.1 -81.1 -26.7 -4.8 -17.7 -0.3 7 7 A S H >4 S+ 0 0 43 1,-0.3 3,-2.1 2,-0.2 4,-0.4 0.909 95.2 54.5 -53.8 -41.6 -2.1 -17.5 -3.0 8 8 A D H >< S+ 0 0 88 -4,-1.5 3,-1.2 1,-0.3 -1,-0.3 0.909 100.9 60.1 -56.7 -40.0 -3.5 -14.1 -3.8 9 9 A E G >< S+ 0 0 127 -4,-0.6 3,-1.5 -3,-0.4 4,-0.3 0.499 78.1 90.6 -68.4 -0.1 -3.0 -13.1 -0.1 10 10 A M G X S+ 0 0 133 -3,-2.1 3,-0.9 -4,-0.3 -1,-0.2 0.931 89.4 47.2 -58.2 -42.4 0.8 -13.8 -0.5 11 11 A N G X> S+ 0 0 108 -3,-1.2 3,-1.3 -4,-0.4 4,-1.2 0.416 80.0 100.4 -79.9 4.6 1.2 -10.1 -1.5 12 12 A T H <> + 0 0 51 -3,-1.5 4,-1.4 1,-0.3 -1,-0.2 0.824 67.3 76.5 -55.2 -28.1 -1.0 -9.0 1.5 13 13 A I H <> S+ 0 0 132 -3,-0.9 4,-0.9 -4,-0.3 3,-0.5 0.922 99.6 40.8 -44.7 -50.1 2.4 -8.2 3.1 14 14 A L H <> S+ 0 0 104 -3,-1.3 4,-3.3 1,-0.2 5,-0.3 0.865 101.0 72.1 -70.6 -35.2 2.5 -5.1 0.9 15 15 A D H X S+ 0 0 99 -4,-1.2 4,-2.7 2,-0.2 -1,-0.2 0.858 98.3 49.9 -48.4 -40.9 -1.2 -4.3 1.4 16 16 A N H X S+ 0 0 123 -4,-1.4 4,-1.4 -3,-0.5 5,-0.2 0.997 118.3 33.6 -62.7 -70.2 -0.4 -3.2 5.0 17 17 A L H X S+ 0 0 109 -4,-0.9 4,-2.4 1,-0.2 -2,-0.2 0.821 120.8 53.1 -55.8 -32.3 2.5 -0.8 4.5 18 18 A A H X S+ 0 0 42 -4,-3.3 4,-2.6 2,-0.2 5,-0.2 0.924 100.5 59.1 -70.9 -43.7 1.1 0.2 1.1 19 19 A A H X S+ 0 0 43 -4,-2.7 4,-2.0 -5,-0.3 -1,-0.2 0.899 115.6 36.4 -49.7 -44.9 -2.4 1.2 2.6 20 20 A R H X S+ 0 0 187 -4,-1.4 4,-2.9 2,-0.2 5,-0.4 0.865 109.8 61.5 -79.7 -35.9 -0.6 3.7 4.8 21 21 A D H X S+ 0 0 97 -4,-2.4 4,-1.6 -5,-0.2 -2,-0.2 0.896 112.3 40.9 -52.6 -39.8 2.0 4.7 2.2 22 22 A F H X S+ 0 0 137 -4,-2.6 4,-1.4 2,-0.2 -2,-0.2 0.979 117.2 43.0 -76.8 -57.6 -0.9 5.9 0.1 23 23 A I H X S+ 0 0 121 -4,-2.0 4,-0.7 1,-0.2 3,-0.4 0.936 122.4 41.8 -53.3 -47.0 -3.1 7.6 2.7 24 24 A N H >X S+ 0 0 81 -4,-2.9 4,-2.2 1,-0.2 3,-0.5 0.824 100.2 72.7 -72.1 -29.8 -0.1 9.2 4.3 25 25 A W H 3< S+ 0 0 95 -4,-1.6 -1,-0.2 -5,-0.4 8,-0.2 0.913 90.8 60.1 -44.6 -49.7 1.5 10.0 0.9 26 26 A L H >< S+ 0 0 107 -4,-1.4 3,-1.0 -3,-0.4 4,-0.5 0.902 107.8 43.9 -48.5 -48.8 -1.2 12.7 0.6 27 27 A I H S+ 0 0 88 -4,-2.2 5,-0.8 1,-0.2 -1,-0.3 -0.129 91.1 86.7 -85.2 42.8 3.9 14.0 2.6 29 29 A T T <45S+ 0 0 49 -3,-1.0 -1,-0.2 -2,-0.9 -2,-0.1 0.866 99.5 18.1-102.0 -61.5 3.3 15.5 -0.9 30 30 A K T 45S+ 0 0 180 -4,-0.5 -2,-0.1 -3,-0.4 -3,-0.1 0.928 130.3 46.5 -80.0 -44.7 3.7 19.3 -0.6 31 31 A I T <5S+ 0 0 144 -4,-0.7 -3,-0.1 1,-0.1 -1,-0.1 0.947 137.1 7.0 -63.5 -49.8 5.6 19.4 2.8 32 32 A T T 5 0 0 98 -5,-0.2 -3,-0.2 0, 0.0 -2,-0.1 0.888 360.0 360.0 -99.7 -51.4 8.1 16.6 1.9 33 33 A D < 0 0 157 -5,-0.8 -4,-0.2 -8,-0.2 -3,-0.1 0.944 360.0 360.0 64.5 360.0 7.6 15.7 -1.8