==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=27-NOV-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER VIRAL PROTEIN 24-NOV-10 2L6R . COMPND 2 MOLECULE: HEAD-TO-TAIL JOINING PROTEIN W (GPW) FROM BACTERI . SOURCE 2 ORGANISM_SCIENTIFIC: ENTEROBACTERIA PHAGE LAMBDA; . AUTHOR L.SBORGI,A.VERMA,V.MUNOZ,E.DE ALBA . 62 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 5683.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 72.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 9.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 6.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 12.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 28 45.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M > 0 0 163 0, 0.0 4,-1.1 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 162.9 57.5 7.7 9.5 2 2 A V H >> + 0 0 112 1,-0.2 4,-2.3 2,-0.2 3,-1.1 0.957 360.0 57.2 -63.8 -47.7 53.7 7.0 9.3 3 3 A R H 3> S+ 0 0 103 1,-0.3 4,-1.5 2,-0.2 -1,-0.2 0.897 98.8 62.5 -51.0 -38.4 53.8 6.3 5.6 4 4 A Q H 3> S+ 0 0 134 1,-0.2 4,-1.5 2,-0.2 -1,-0.3 0.921 108.2 41.9 -55.0 -41.8 56.4 3.6 6.4 5 5 A E H X S+ 0 0 136 -4,-2.6 4,-1.4 1,-0.2 3,-1.2 0.965 100.3 56.7 -69.5 -50.1 51.9 -5.0 1.7 12 12 A A H 3X S+ 0 0 52 -4,-2.2 4,-1.2 1,-0.3 -1,-0.2 0.781 103.4 61.1 -53.2 -18.8 50.4 -7.5 4.2 13 13 A A H 3X S+ 0 0 13 -4,-1.1 4,-1.7 2,-0.2 -1,-0.3 0.900 93.3 58.5 -76.2 -40.8 47.4 -7.2 1.8 14 14 A L H -A 31 0A 74 3,-2.7 3,-2.0 -2,-0.7 -2,-0.1 -0.947 69.3 -19.3-131.3 114.7 43.3 5.0 3.6 29 29 A D T 3 S- 0 0 146 -2,-0.4 -1,-0.1 1,-0.3 3,-0.1 0.900 124.8 -57.6 59.3 35.7 42.9 8.7 4.9 30 30 A G T 3 S+ 0 0 76 1,-0.2 2,-0.4 0, 0.0 -1,-0.3 0.624 122.0 111.7 69.8 8.2 41.0 7.3 7.9 31 31 A R E < -A 28 0A 186 -3,-2.0 -3,-2.7 2,-0.0 2,-0.3 -0.948 62.1-138.7-118.5 132.0 38.5 5.8 5.3 32 32 A R E -A 27 0A 169 -2,-0.4 2,-0.3 -5,-0.2 -5,-0.2 -0.634 20.9-179.4 -88.7 146.3 38.2 2.1 4.8 33 33 A V E -A 26 0A 59 -7,-1.2 -7,-1.0 -2,-0.3 2,-0.6 -0.994 20.3-141.2-143.5 146.4 37.8 0.5 1.3 34 34 A E E -A 25 0A 132 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.860 19.9-176.5-113.5 102.4 37.4 -3.1 0.1 35 35 A F E -A 24 0A 97 -11,-0.7 -11,-1.1 -2,-0.6 2,-0.2 -0.742 12.0-150.6 -95.1 144.5 39.3 -4.1 -3.1 36 36 A T > - 0 0 43 -2,-0.3 3,-2.7 -13,-0.2 -13,-0.2 -0.711 37.4 -96.6-107.9 162.0 38.9 -7.6 -4.5 37 37 A A G > S+ 0 0 43 -15,-0.3 3,-1.2 1,-0.3 4,-0.2 0.704 114.4 86.1 -52.2 -11.9 41.6 -9.5 -6.6 38 38 A T G 3 S+ 0 0 117 1,-0.3 -1,-0.3 2,-0.1 3,-0.1 0.813 100.3 30.4 -60.4 -26.2 39.6 -8.1 -9.6 39 39 A S G <> S+ 0 0 29 -3,-2.7 4,-0.7 1,-0.1 -1,-0.3 -0.350 73.4 133.0-128.3 53.9 41.7 -4.9 -9.3 40 40 A V H <> + 0 0 46 -3,-1.2 4,-1.1 1,-0.2 -1,-0.1 0.649 66.3 68.9 -79.2 -11.2 45.1 -6.1 -7.9 41 41 A S H >> S+ 0 0 87 2,-0.2 4,-2.0 1,-0.2 3,-0.6 0.951 93.4 53.7 -72.4 -47.0 46.9 -4.1 -10.6 42 42 A D H 3> S+ 0 0 45 1,-0.3 4,-2.8 2,-0.2 5,-0.2 0.894 104.7 56.8 -55.7 -36.8 46.0 -0.7 -9.1 43 43 A L H 3X S+ 0 0 21 -4,-0.7 4,-2.2 1,-0.2 -1,-0.3 0.904 105.4 51.6 -63.3 -35.9 47.5 -1.9 -5.8 44 44 A K H X S+ 0 0 12 -4,-2.2 3,-1.8 1,-0.2 4,-1.4 0.959 108.7 53.0 -52.6 -52.1 52.6 1.0 -3.9 48 48 A A H 3X S+ 0 0 52 -4,-1.8 4,-1.5 1,-0.3 3,-0.4 0.903 101.0 61.0 -52.1 -41.4 55.1 2.2 -6.5 49 49 A E H 3X S+ 0 0 109 -4,-2.0 4,-1.1 1,-0.2 -1,-0.3 0.813 102.9 52.5 -58.5 -26.4 53.8 5.7 -6.0 50 50 A L H X S+ 0 0 98 -4,-1.5 3,-0.8 1,-0.2 4,-0.7 0.802 111.6 51.0 -83.6 -28.5 58.8 7.6 -5.4 53 53 A Q H 3< S+ 0 0 76 -4,-1.1 5,-0.2 1,-0.2 -2,-0.2 0.833 105.4 55.5 -77.6 -30.3 57.3 9.8 -2.6 54 54 A T T 3< S+ 0 0 61 -4,-2.1 -1,-0.2 1,-0.2 -2,-0.1 0.282 96.1 75.0 -84.4 15.2 59.7 8.4 -0.0 55 55 A G T <4 S+ 0 0 55 -3,-0.8 -2,-0.2 -5,-0.1 -1,-0.2 0.927 89.4 47.7 -89.7 -63.3 62.6 9.5 -2.3 56 56 A M S < S- 0 0 127 -4,-0.7 2,-0.1 1,-0.1 3,-0.0 -0.411 94.6-109.9 -76.1 155.9 62.8 13.3 -1.9 57 57 A T - 0 0 130 1,-0.2 2,-3.3 -2,-0.1 -1,-0.1 0.195 49.4-115.5 -72.0 24.8 62.7 14.8 1.6 58 58 A Q - 0 0 127 -5,-0.2 2,-3.4 1,-0.1 -1,-0.2 -0.182 39.1-168.9 71.2 -53.1 59.2 16.0 0.7 59 59 A R - 0 0 208 -2,-3.3 2,-0.2 -3,-0.0 -1,-0.1 -0.300 54.2 -53.4 67.2 -70.0 60.5 19.6 1.0 60 60 A R S S- 0 0 162 -2,-3.4 0, 0.0 1,-0.4 0, 0.0 -0.863 93.3 -13.4-170.8-154.8 57.0 21.0 0.9 61 61 A R 0 0 223 -2,-0.2 -1,-0.4 1,-0.1 0, 0.0 0.099 360.0 360.0 -51.7 178.2 53.8 20.9 -1.2 62 62 A G 0 0 134 -3,-0.1 -1,-0.1 0, 0.0 -3,-0.0 -0.316 360.0 360.0 -68.5 360.0 54.0 19.4 -4.7