==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 03-DEC-10 2L77 . COMPND 2 MOLECULE: PROSTATIC ACID PHOSPHATASE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.NANGA,J.R.BRENDER,N.POPOVYCH,A.RAMAMOORTHY . 39 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4252.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 34 87.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 14 35.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 20 51.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 122 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 153.8 -1.3 9.5 -9.1 2 2 A I + 0 0 143 1,-0.2 2,-0.3 2,-0.0 0, 0.0 0.097 360.0 56.2-142.7 21.0 0.1 8.3 -5.9 3 3 A H - 0 0 85 1,-0.1 -1,-0.2 2,-0.0 4,-0.0 -0.981 51.9-161.1-156.8 143.2 -0.8 11.0 -3.4 4 4 A K S S- 0 0 175 -2,-0.3 -1,-0.1 -3,-0.1 3,-0.1 0.940 89.1 -22.1 -87.4 -69.4 -4.0 12.8 -2.2 5 5 A Q S >> S+ 0 0 104 1,-0.1 3,-1.8 2,-0.1 4,-0.6 0.012 87.2 132.3-133.7 26.2 -2.9 16.1 -0.7 6 6 A K G >4 + 0 0 69 1,-0.3 3,-1.6 2,-0.2 7,-0.2 0.823 65.2 73.3 -48.2 -34.1 0.8 15.3 0.2 7 7 A E G 34 S+ 0 0 164 1,-0.3 -1,-0.3 -3,-0.1 6,-0.1 0.891 84.9 64.1 -48.1 -45.4 1.6 18.6 -1.4 8 8 A K G <4 S+ 0 0 156 -3,-1.8 -1,-0.3 5,-0.0 2,-0.2 0.851 95.0 73.8 -48.2 -38.2 0.1 20.4 1.6 9 9 A S << - 0 0 45 -3,-1.6 0, 0.0 -4,-0.6 0, 0.0 -0.540 63.7-167.3 -81.2 145.1 2.9 18.8 3.6 10 10 A R S S- 0 0 213 -2,-0.2 -1,-0.1 3,-0.0 4,-0.0 0.896 75.1 -25.9 -93.4 -74.2 6.5 20.1 3.3 11 11 A L S >> S+ 0 0 118 2,-0.1 3,-2.2 3,-0.0 4,-0.5 0.725 128.5 68.9-112.1 -40.3 8.9 17.6 4.9 12 12 A Q H >> S+ 0 0 135 1,-0.3 3,-1.2 2,-0.2 4,-0.8 0.869 89.0 69.1 -48.3 -41.4 6.8 15.9 7.5 13 13 A G H >> S+ 0 0 15 1,-0.3 4,-1.3 2,-0.2 3,-0.6 0.824 84.8 71.7 -48.2 -34.8 4.9 14.2 4.6 14 14 A G H <> S+ 0 0 41 -3,-2.2 4,-1.5 1,-0.3 3,-0.4 0.915 90.3 56.7 -48.2 -51.7 8.0 12.2 3.9 15 15 A V H X S+ 0 0 106 -4,-1.5 4,-1.3 1,-0.2 3,-0.5 0.939 107.0 50.4 -48.2 -57.3 8.1 5.4 4.7 19 19 A E H >X S+ 0 0 105 -4,-2.1 4,-1.3 1,-0.3 3,-0.6 0.917 105.5 57.2 -48.3 -51.0 5.3 4.0 6.9 20 20 A I H 3X S+ 0 0 76 -4,-2.2 4,-2.3 1,-0.2 -1,-0.3 0.894 98.8 61.0 -48.2 -46.0 3.3 3.0 3.7 21 21 A L H X S+ 0 0 123 -4,-2.3 4,-1.2 1,-0.2 3,-1.0 0.942 111.3 50.2 -48.8 -57.1 3.1 -2.9 1.4 25 25 A K H >X S+ 0 0 129 -4,-3.1 4,-1.3 1,-0.3 3,-0.9 0.924 104.7 57.5 -48.2 -52.7 6.1 -5.0 2.2 26 26 A R H 3X S+ 0 0 167 -4,-2.8 4,-0.5 1,-0.3 3,-0.4 0.840 99.8 61.4 -48.4 -36.8 4.1 -7.0 4.7 27 27 A A H X< S+ 0 0 44 -4,-1.5 3,-1.5 -3,-1.0 -1,-0.3 0.921 102.5 48.4 -57.5 -46.8 1.7 -7.8 1.9 28 28 A T H << S+ 0 0 91 -4,-1.2 -1,-0.3 -3,-0.9 -2,-0.2 0.737 104.2 62.3 -66.6 -22.1 4.5 -9.6 -0.0 29 29 A Q H 3< S+ 0 0 110 -4,-1.3 -1,-0.3 -3,-0.4 -2,-0.2 0.601 110.0 41.0 -78.5 -11.7 5.3 -11.5 3.2 30 30 A I X< + 0 0 107 -3,-1.5 3,-1.0 -4,-0.5 -1,-0.3 -0.525 60.7 158.7-136.7 67.9 1.8 -13.0 3.1 31 31 A P T > + 0 0 67 0, 0.0 3,-2.7 0, 0.0 4,-0.4 0.439 48.1 107.3 -69.8 2.3 1.0 -14.0 -0.5 32 32 A S T >> + 0 0 81 1,-0.3 3,-2.2 2,-0.2 4,-0.6 0.869 64.1 69.9 -48.2 -41.3 -1.6 -16.4 1.0 33 33 A Y H X> S+ 0 0 87 -3,-1.0 4,-1.5 1,-0.3 3,-0.9 0.788 80.6 78.4 -48.7 -28.9 -4.3 -14.0 -0.2 34 34 A K H <> S+ 0 0 90 -3,-2.7 4,-2.3 1,-0.3 -1,-0.3 0.881 87.1 56.8 -48.4 -43.4 -3.3 -15.2 -3.7 35 35 A K H <4 S+ 0 0 140 -3,-2.2 -1,-0.3 -4,-0.4 -2,-0.2 0.885 103.9 54.7 -57.1 -40.7 -5.3 -18.4 -3.1 36 36 A L H << S+ 0 0 140 -3,-0.9 -2,-0.2 -4,-0.6 -1,-0.2 0.988 112.3 38.5 -56.7 -67.6 -8.4 -16.3 -2.3 37 37 A I H < S+ 0 0 131 -4,-1.5 -1,-0.2 2,-0.0 -2,-0.2 0.829 114.9 71.1 -53.5 -33.7 -8.4 -14.3 -5.6 38 38 A M < 0 0 112 -4,-2.3 -3,-0.0 -5,-0.3 0, 0.0 -0.097 360.0 360.0 -75.5 179.6 -7.4 -17.4 -7.4 39 39 A Y 0 0 244 0, 0.0 -4,-0.1 0, 0.0 -1,-0.1 0.799 360.0 360.0 -58.3 360.0 -9.5 -20.5 -7.9