==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JAN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 03-DEC-10 2L79 . COMPND 2 MOLECULE: PROSTATIC ACID PHOSPHATASE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.NANGA,J.R.BRENDER,N.POPOVYCH,A.RAMAMOORTHY . 39 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4977.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 51.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 13 33.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 15.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 110 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 59.0 -2.2 17.2 -13.4 2 2 A I + 0 0 153 2,-0.0 2,-0.5 0, 0.0 0, 0.0 0.803 360.0 82.8 -55.2 -30.0 -1.1 14.7 -10.8 3 3 A H - 0 0 161 1,-0.0 2,-0.2 0, 0.0 0, 0.0 -0.671 67.8-168.9 -82.0 123.5 -3.0 16.8 -8.2 4 4 A K - 0 0 144 -2,-0.5 -2,-0.0 1,-0.2 -1,-0.0 -0.541 29.8 -79.1-105.7 173.5 -6.7 16.2 -8.2 5 5 A Q - 0 0 178 -2,-0.2 2,-0.3 1,-0.0 -1,-0.2 -0.254 43.5-146.7 -69.2 159.0 -9.7 18.0 -6.5 6 6 A K - 0 0 139 1,-0.1 3,-0.1 4,-0.0 4,-0.1 -0.920 23.4-179.5-129.2 155.2 -10.4 17.6 -2.8 7 7 A E S S+ 0 0 207 -2,-0.3 2,-0.2 2,-0.1 -1,-0.1 0.650 71.3 44.7-120.0 -37.0 -13.6 17.5 -0.7 8 8 A K S S- 0 0 136 1,-0.2 -1,-0.0 0, 0.0 0, 0.0 -0.508 97.6 -74.7-105.2 175.6 -12.3 17.0 2.9 9 9 A S + 0 0 105 -2,-0.2 2,-0.2 -3,-0.1 -1,-0.2 -0.247 49.4 168.7 -67.6 157.8 -9.4 18.6 4.8 10 10 A R - 0 0 187 -4,-0.1 2,-0.2 5,-0.0 3,-0.0 -0.672 12.2-166.6-175.3 114.8 -5.8 17.6 4.1 11 11 A L > - 0 0 153 -2,-0.2 3,-1.0 1,-0.1 4,-0.5 -0.656 37.7-105.3-104.8 162.3 -2.5 19.1 5.3 12 12 A Q G > S+ 0 0 174 1,-0.3 3,-2.7 -2,-0.2 4,-0.3 0.938 120.5 55.2 -48.2 -57.0 1.0 18.5 4.1 13 13 A G G > S+ 0 0 53 1,-0.3 3,-2.8 2,-0.2 -1,-0.3 0.807 89.9 78.0 -48.2 -32.4 1.9 16.4 7.1 14 14 A G G X S+ 0 0 23 -3,-1.0 3,-2.9 1,-0.3 -1,-0.3 0.808 74.2 77.5 -48.2 -32.5 -1.1 14.2 6.3 15 15 A V G X S+ 0 0 97 -3,-2.7 3,-2.9 -4,-0.5 -1,-0.3 0.807 74.7 78.2 -48.4 -31.8 1.1 12.7 3.6 16 16 A L G X S+ 0 0 115 -3,-2.8 3,-2.9 1,-0.3 -1,-0.3 0.817 74.7 76.9 -48.2 -33.3 2.7 10.7 6.5 17 17 A V G X S+ 0 0 88 -3,-2.9 3,-3.1 1,-0.3 -1,-0.3 0.815 75.5 76.6 -48.2 -33.0 -0.4 8.5 6.3 18 18 A N G X S+ 0 0 105 -3,-2.9 3,-2.5 1,-0.3 4,-0.4 0.817 74.2 78.5 -48.7 -33.1 1.2 6.9 3.3 19 19 A E G X> S+ 0 0 116 -3,-2.9 3,-1.4 1,-0.3 4,-1.0 0.771 72.6 82.1 -48.3 -27.0 3.5 5.1 5.7 20 20 A I H <> S+ 0 0 98 -3,-3.1 4,-2.6 1,-0.3 -1,-0.3 0.863 79.4 65.1 -47.1 -41.1 0.5 2.8 6.2 21 21 A L H <> S+ 0 0 84 -3,-2.5 4,-1.1 -4,-0.2 -1,-0.3 0.894 96.7 57.0 -50.1 -44.8 1.5 1.0 3.1 22 22 A N H X4 S+ 0 0 113 -3,-1.4 3,-2.0 -4,-0.4 4,-0.5 0.971 109.9 40.6 -51.2 -65.8 4.7 -0.1 4.9 23 23 A H H >X S+ 0 0 110 -4,-1.0 3,-1.5 1,-0.3 4,-0.7 0.870 105.4 68.0 -51.9 -40.0 2.9 -1.8 7.8 24 24 A M H 3X S+ 0 0 106 -4,-2.6 4,-2.3 1,-0.3 -1,-0.3 0.806 83.8 75.3 -50.9 -31.0 0.4 -3.2 5.3 25 25 A K H < S+ 0 0 50 -4,-0.7 3,-2.4 1,-0.3 -1,-0.3 0.839 104.3 67.2 -61.8 -33.8 -0.7 -8.4 6.2 28 28 A T H 3< S+ 0 0 95 -4,-2.3 -1,-0.3 1,-0.3 -2,-0.2 0.738 92.6 61.7 -59.4 -22.3 0.2 -8.7 2.5 29 29 A Q T << S+ 0 0 165 -3,-1.4 -1,-0.3 -4,-1.0 -2,-0.2 0.600 128.3 4.7 -79.5 -11.9 2.2 -11.8 3.5 30 30 A I S < S- 0 0 118 -3,-2.4 -1,-0.3 -4,-0.2 -2,-0.2 -0.346 79.1-172.8-174.1 81.9 -1.0 -13.4 4.7 31 31 A P - 0 0 74 0, 0.0 -3,-0.1 0, 0.0 -5,-0.0 0.014 39.2-105.2 -69.8-178.7 -4.3 -11.7 4.2 32 32 A S S S+ 0 0 128 2,-0.0 3,-0.1 3,-0.0 -5,-0.0 -0.010 75.9 129.1-100.0 28.0 -7.7 -12.8 5.6 33 33 A Y S S- 0 0 146 1,-0.1 2,-0.5 0, 0.0 0, 0.0 0.086 70.1 -75.1 -69.4-172.3 -8.9 -14.0 2.2 34 34 A K - 0 0 168 0, 0.0 2,-0.3 0, 0.0 -1,-0.1 -0.798 48.0-164.4 -94.3 125.2 -10.4 -17.5 1.5 35 35 A K + 0 0 113 -2,-0.5 3,-0.1 1,-0.1 -3,-0.0 -0.796 20.1 163.0-108.9 151.2 -7.9 -20.4 1.4 36 36 A L + 0 0 142 1,-0.5 2,-0.3 -2,-0.3 -1,-0.1 0.585 63.5 23.9-126.2 -69.9 -8.5 -23.9 -0.0 37 37 A I - 0 0 115 1,-0.1 -1,-0.5 2,-0.0 0, 0.0 -0.794 46.8-169.7-107.4 149.6 -5.3 -25.9 -0.6 38 38 A M 0 0 144 -2,-0.3 -1,-0.1 -3,-0.1 0, 0.0 0.754 360.0 360.0-103.3 -36.4 -1.9 -25.4 1.0 39 39 A Y 0 0 247 0, 0.0 -1,-0.0 0, 0.0 -2,-0.0 0.794 360.0 360.0 -68.0 360.0 0.3 -27.7 -1.2