==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=7-AUG-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER APOPTOSIS 04-JAN-11 2L86 . COMPND 2 MOLECULE: ISLET AMYLOID POLYPEPTIDE; . SOURCE 2 SYNTHETIC: YES; . AUTHOR R.NANGA,J.R.BRENDER,S.VIVEKANANDAN,A.RAMAMOORTHY . 37 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3681.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 29 78.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 11 29.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 15 40.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 233 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -65.9 2.8 -8.3 2.8 2 2 A a - 0 0 49 2,-0.1 3,-0.2 5,-0.0 0, 0.0 0.944 360.0-171.0 59.2 95.4 0.3 -10.0 0.5 3 3 A N S S+ 0 0 141 1,-0.2 2,-0.6 4,-0.0 0, 0.0 0.979 72.8 5.7 -77.9 -71.4 1.3 -9.3 -3.1 4 4 A T S S+ 0 0 141 3,-0.0 2,-0.3 4,-0.0 -1,-0.2 -0.867 103.2 84.3-121.9 97.8 -1.6 -10.6 -5.2 5 5 A A S > S- 0 0 50 -2,-0.6 3,-2.3 -3,-0.2 4,-0.3 -0.928 94.2 -57.8-167.8-171.3 -4.5 -11.9 -3.2 6 6 A T T >> S+ 0 0 111 1,-0.3 3,-2.2 -2,-0.3 4,-0.6 0.795 117.7 78.0 -55.0 -28.9 -7.7 -10.9 -1.4 7 7 A a H >> S+ 0 0 44 1,-0.3 4,-2.3 2,-0.2 3,-0.9 0.807 73.8 79.4 -51.0 -31.0 -5.6 -8.6 0.7 8 8 A A H <> S+ 0 0 50 -3,-2.3 4,-2.6 1,-0.3 5,-0.3 0.854 87.3 57.2 -45.6 -40.3 -5.7 -6.3 -2.3 9 9 A T H <> S+ 0 0 94 -3,-2.2 4,-2.2 -4,-0.3 -1,-0.3 0.914 108.6 44.9 -59.3 -45.0 -9.2 -5.2 -1.1 10 10 A Q H X S+ 0 0 140 -4,-2.3 4,-2.0 2,-0.2 3,-0.6 0.978 116.3 44.0 -55.5 -63.1 -4.9 -2.3 0.9 12 12 A L H >X S+ 0 0 114 -4,-2.6 4,-2.1 1,-0.3 3,-0.7 0.937 112.5 52.1 -47.5 -57.3 -6.7 -0.5 -1.8 13 13 A A H 3X S+ 0 0 53 -4,-2.2 4,-2.2 -5,-0.3 -1,-0.3 0.843 109.1 52.4 -49.4 -36.7 -9.6 0.4 0.5 14 14 A N H < + 0 0 89 -4,-1.8 3,-2.4 -5,-0.2 4,-0.4 -0.547 61.0 163.7-103.5 66.0 -6.7 7.6 3.5 19 19 A S T > S+ 0 0 88 -2,-0.8 3,-2.0 -3,-0.4 4,-0.5 0.794 70.1 72.8 -51.9 -29.0 -6.2 10.0 0.6 20 20 A S T >> S+ 0 0 93 1,-0.3 4,-2.8 -3,-0.2 3,-1.6 0.836 79.4 73.3 -55.9 -33.9 -3.5 11.6 2.7 21 21 A N H <> S+ 0 0 59 -3,-2.4 4,-2.0 1,-0.3 -1,-0.3 0.805 85.1 67.6 -51.1 -30.5 -1.4 8.5 1.9 22 22 A N H <4 S+ 0 0 108 -3,-2.0 -1,-0.3 -4,-0.4 -2,-0.2 0.890 113.8 27.1 -58.1 -41.2 -1.0 10.0 -1.6 23 23 A F H X> S+ 0 0 162 -3,-1.6 3,-2.1 -4,-0.5 4,-0.5 0.902 120.0 53.7 -87.4 -49.3 1.1 12.8 -0.2 24 24 A G H >X S+ 0 0 26 -4,-2.8 4,-2.6 1,-0.3 3,-1.1 0.759 91.0 78.8 -57.7 -24.4 2.5 11.1 2.9 25 25 A A H 3X S+ 0 0 18 -4,-2.0 4,-1.8 -5,-0.4 7,-0.4 0.785 92.7 51.2 -54.9 -27.8 3.8 8.4 0.6 26 26 A I H <4 S+ 0 0 115 -3,-2.1 -1,-0.3 2,-0.2 -2,-0.2 0.748 110.1 48.6 -81.3 -25.4 6.6 10.8 -0.3 27 27 A L H << S+ 0 0 164 -3,-1.1 -2,-0.2 -4,-0.5 -1,-0.1 0.874 124.2 29.0 -80.9 -40.3 7.5 11.4 3.3 28 28 A S H < S- 0 0 93 -4,-2.6 -2,-0.2 5,-0.0 -3,-0.2 0.849 80.9-163.6 -87.1 -39.8 7.6 7.8 4.3 29 29 A S <> + 0 0 54 -4,-1.8 5,-1.9 -5,-0.4 8,-0.2 0.819 49.8 125.5 57.6 31.3 8.6 6.4 0.9 30 30 A T T 5S+ 0 0 75 3,-0.3 -1,-0.1 -5,-0.1 -4,-0.1 0.735 79.2 30.7 -89.5 -26.6 7.5 3.0 2.2 31 31 A N T 5S+ 0 0 98 -6,-0.3 -1,-0.1 3,-0.1 -5,-0.1 0.693 137.9 25.0-101.7 -27.1 5.1 2.3 -0.7 32 32 A V T 5S+ 0 0 83 -7,-0.4 -2,-0.1 2,-0.1 5,-0.1 0.729 131.6 37.3-106.0 -34.8 7.0 4.3 -3.4 33 33 A G T >>5S+ 0 0 14 -8,-0.3 4,-3.1 2,-0.1 3,-2.6 0.942 113.2 51.9 -83.2 -54.0 10.6 4.2 -1.9 34 34 A S T 34