==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-SEP-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER RNA BINDING PROTEIN 24-FEB-11 2L9V . COMPND 2 MOLECULE: PRE-MRNA-PROCESSING FACTOR 40 HOMOLOG A; . SOURCE 2 ORGANISM_SCIENTIFIC: HOMO SAPIENS; . AUTHOR D.M.KORZHNEV,R.M.VERNON,T.L.RELIGA,A.HANSEN,D.BAKER,A.R.FERS . 49 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4198.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 33 67.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 8 16.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 49.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 11 A W 0 0 157 0, 0.0 3,-0.0 0, 0.0 6,-0.0 0.000 360.0 360.0 360.0 143.9 0.8 1.2 0.0 2 12 A N + 0 0 156 1,-0.1 2,-0.4 47,-0.0 0, 0.0 0.488 360.0 64.6 -98.8 -7.1 -0.5 4.7 0.8 3 13 A T > - 0 0 65 1,-0.1 4,-2.1 2,-0.0 5,-0.1 -0.970 69.0-147.4-124.3 131.8 1.8 6.4 -1.8 4 14 A K H > S+ 0 0 132 -2,-0.4 4,-2.2 1,-0.2 5,-0.1 0.887 103.0 51.3 -61.5 -40.9 1.7 6.0 -5.5 5 15 A E H > S+ 0 0 146 1,-0.2 4,-1.9 2,-0.2 -1,-0.2 0.894 109.8 49.3 -64.1 -41.5 5.5 6.4 -5.8 6 16 A E H > S+ 0 0 81 2,-0.2 4,-2.0 1,-0.2 -1,-0.2 0.852 109.0 53.7 -66.1 -35.7 6.1 3.8 -3.1 7 17 A A H X S+ 0 0 0 -4,-2.1 4,-2.1 2,-0.2 -2,-0.2 0.912 107.2 50.7 -62.5 -44.2 3.7 1.4 -5.0 8 18 A K H X S+ 0 0 120 -4,-2.2 4,-2.3 1,-0.2 -2,-0.2 0.874 108.2 53.2 -61.5 -38.7 5.8 1.9 -8.1 9 19 A Q H X S+ 0 0 82 -4,-1.9 4,-2.0 2,-0.2 -1,-0.2 0.912 107.9 50.0 -61.6 -44.3 8.9 1.1 -6.2 10 20 A A H X S+ 0 0 10 -4,-2.0 4,-2.1 1,-0.2 -2,-0.2 0.876 109.3 52.8 -61.3 -38.8 7.3 -2.1 -4.9 11 21 A F H X S+ 0 0 7 -4,-2.1 4,-2.4 2,-0.2 -2,-0.2 0.926 107.6 50.3 -61.4 -46.7 6.4 -3.0 -8.5 12 22 A K H X S+ 0 0 113 -4,-2.3 4,-1.9 1,-0.2 -2,-0.2 0.882 108.5 53.3 -60.5 -39.9 10.0 -2.4 -9.7 13 23 A E H X S+ 0 0 108 -4,-2.0 4,-1.9 1,-0.2 -1,-0.2 0.927 111.3 45.0 -60.2 -47.0 11.2 -4.7 -6.9 14 24 A A H X S+ 0 0 3 -4,-2.1 4,-1.8 1,-0.2 -2,-0.2 0.848 108.8 58.0 -64.9 -35.1 8.9 -7.5 -8.0 15 25 A L H <>S+ 0 0 22 -4,-2.4 5,-2.7 2,-0.2 -1,-0.2 0.869 106.4 48.6 -63.1 -37.6 9.9 -6.8 -11.6 16 26 A K H ><5S+ 0 0 155 -4,-1.9 3,-1.3 3,-0.2 -2,-0.2 0.895 110.3 50.8 -66.3 -41.8 13.5 -7.5 -10.6 17 27 A E H 3<5S+ 0 0 132 -4,-1.9 -2,-0.2 1,-0.3 -1,-0.2 0.801 112.7 47.0 -65.0 -29.4 12.4 -10.7 -8.8 18 28 A K T 3<5S- 0 0 58 -4,-1.8 -1,-0.3 -5,-0.1 -2,-0.2 0.288 110.0-126.1 -95.0 8.6 10.5 -11.7 -12.0 19 29 A R T < 5 - 0 0 229 -3,-1.3 -3,-0.2 1,-0.2 -2,-0.1 0.908 35.2-166.7 46.6 52.3 13.5 -10.8 -14.2 20 30 A V < - 0 0 29 -5,-2.7 -1,-0.2 1,-0.1 9,-0.1 -0.585 22.4-114.5 -74.7 120.8 11.4 -8.5 -16.3 21 31 A P > - 0 0 86 0, 0.0 3,-1.6 0, 0.0 -1,-0.1 -0.177 12.8-128.7 -55.1 143.5 13.3 -7.6 -19.5 22 32 A S T 3 S+ 0 0 119 1,-0.3 -2,-0.1 -3,-0.0 -3,-0.0 0.678 111.9 55.8 -66.6 -17.0 14.3 -4.0 -19.9 23 33 A N T 3 S+ 0 0 157 2,-0.1 -1,-0.3 0, 0.0 2,-0.2 0.415 86.9 106.2 -94.9 -0.4 12.7 -4.1 -23.3 24 34 A A S < S- 0 0 26 -3,-1.6 -4,-0.0 1,-0.1 2,-0.0 -0.549 72.5-117.2 -80.9 144.9 9.4 -5.3 -21.9 25 35 A S > - 0 0 53 -2,-0.2 4,-2.3 1,-0.1 5,-0.2 -0.276 25.7-107.0 -75.3 164.8 6.4 -3.0 -21.7 26 36 A W H > S+ 0 0 139 2,-0.2 4,-2.2 1,-0.2 5,-0.2 0.902 121.9 52.5 -57.1 -43.2 4.7 -1.9 -18.4 27 37 A E H > S+ 0 0 132 1,-0.2 4,-2.0 2,-0.2 -1,-0.2 0.930 110.7 46.1 -58.8 -48.1 1.7 -4.1 -19.2 28 38 A Q H > S+ 0 0 104 1,-0.2 4,-0.8 2,-0.2 -1,-0.2 0.849 110.4 55.0 -63.9 -35.0 4.0 -7.1 -19.8 29 39 A A H >< S+ 0 0 4 -4,-2.3 3,-0.5 1,-0.2 4,-0.5 0.887 109.1 46.8 -64.3 -40.2 5.9 -6.3 -16.6 30 40 A M H >X S+ 0 0 10 -4,-2.2 4,-1.6 1,-0.2 3,-1.5 0.857 100.7 66.1 -70.9 -36.2 2.6 -6.3 -14.6 31 41 A K H 3X S+ 0 0 101 -4,-2.0 4,-2.2 1,-0.3 -1,-0.2 0.792 94.7 61.1 -54.4 -28.8 1.5 -9.6 -16.1 32 42 A M H << S+ 0 0 81 -4,-0.8 -1,-0.3 -3,-0.5 -2,-0.2 0.794 112.7 34.8 -71.1 -28.8 4.5 -11.2 -14.3 33 43 A I H <4 S+ 0 0 0 -3,-1.5 10,-0.4 -4,-0.5 -2,-0.2 0.505 115.5 57.5-102.8 -9.3 3.0 -10.2 -10.9 34 44 A I H < S+ 0 0 88 -4,-1.6 -2,-0.2 1,-0.1 -3,-0.2 0.870 109.2 42.8 -83.2 -43.9 -0.6 -10.7 -12.0 35 45 A N S < S+ 0 0 136 -4,-2.2 -2,-0.1 -5,-0.2 -3,-0.1 0.673 104.1 78.7 -74.8 -17.5 -0.1 -14.3 -13.0 36 46 A D > - 0 0 21 -5,-0.2 3,-2.2 -4,-0.2 7,-0.2 -0.831 67.2-160.2 -98.4 107.5 1.9 -14.9 -9.9 37 47 A P G > S+ 0 0 100 0, 0.0 3,-1.6 0, 0.0 4,-0.3 0.762 88.0 72.2 -56.0 -25.6 -0.3 -15.2 -6.8 38 48 A R G 3 S+ 0 0 218 1,-0.3 3,-0.2 2,-0.1 -5,-0.1 0.792 107.8 33.2 -62.0 -28.5 2.7 -14.3 -4.7 39 49 A Y G X> S+ 0 0 56 -3,-2.2 4,-2.1 -6,-0.2 3,-1.1 0.058 80.0 119.7-114.9 22.2 2.5 -10.7 -5.9 40 50 A S H <> S+ 0 0 56 -3,-1.6 4,-1.8 1,-0.3 5,-0.2 0.790 72.2 62.1 -57.9 -28.3 -1.3 -10.6 -6.2 41 51 A A H 3> S+ 0 0 72 -4,-0.3 4,-1.7 -3,-0.2 -1,-0.3 0.862 107.6 42.1 -64.1 -37.0 -1.2 -7.8 -3.7 42 52 A L H <> S+ 0 0 27 -3,-1.1 4,-2.1 2,-0.2 -2,-0.2 0.795 108.1 60.4 -79.9 -30.8 0.8 -5.8 -6.2 43 53 A A H < S+ 0 0 13 -4,-2.1 -2,-0.2 -10,-0.4 4,-0.2 0.878 113.0 38.2 -61.3 -39.1 -1.4 -6.9 -9.0 44 54 A K H >X S+ 0 0 130 -4,-1.8 4,-1.8 -5,-0.2 3,-1.5 0.853 111.6 58.7 -77.4 -38.1 -4.3 -5.3 -7.2 45 55 A L H 3X S+ 0 0 13 -4,-1.7 4,-2.2 1,-0.3 -2,-0.2 0.849 95.9 63.4 -59.2 -35.5 -2.2 -2.3 -6.0 46 56 A S H 3< S+ 0 0 37 -4,-2.1 -1,-0.3 1,-0.2 -2,-0.2 0.704 109.6 40.8 -64.1 -19.2 -1.4 -1.5 -9.6 47 57 A E H <4 S+ 0 0 163 -3,-1.5 -1,-0.2 -4,-0.2 -2,-0.2 0.727 111.5 54.7 -95.8 -30.3 -5.1 -0.8 -10.0 48 58 A K H < 0 0 161 -4,-1.8 -2,-0.2 1,-0.2 -3,-0.2 0.754 360.0 360.0 -72.0 -25.1 -5.5 0.9 -6.7 49 59 A K < 0 0 90 -4,-2.2 -1,-0.2 -5,-0.2 -2,-0.2 0.351 360.0 360.0-118.4 360.0 -2.8 3.3 -7.7