==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-JAN-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 25-FEB-11 2L9X . COMPND 2 MOLECULE: UNCHARACTERIZED PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS CEREUS 95/8201; . AUTHOR C.S.SIT,R.T.MCKAY,C.HILL,R.P.ROSS,J.C.VEDERAS . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2445.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 20 66.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 43.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 97 0, 0.0 28,-0.1 0, 0.0 25,-0.0 0.000 360.0 360.0 360.0 113.5 2.1 0.0 -1.2 2 2 A N > - 0 0 127 26,-0.1 4,-1.2 1,-0.1 3,-0.3 -0.250 360.0-106.0 -77.9 169.5 0.4 1.2 -4.4 3 3 A A H > S+ 0 0 69 1,-0.2 4,-1.2 2,-0.2 -1,-0.1 0.774 119.1 61.7 -66.3 -26.3 0.6 -0.4 -7.8 4 4 A A H > S+ 0 0 66 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.884 98.9 54.3 -67.3 -39.6 2.9 2.4 -8.9 5 5 A C H > S+ 0 0 11 -3,-0.3 4,-2.9 1,-0.2 -1,-0.2 0.885 102.0 58.8 -62.0 -39.8 5.5 1.6 -6.3 6 6 A V H X S+ 0 0 98 -4,-1.2 4,-0.7 1,-0.2 -1,-0.2 0.903 106.6 47.2 -56.5 -44.0 5.7 -2.0 -7.5 7 7 A I H < S+ 0 0 122 -4,-1.2 3,-0.4 1,-0.2 4,-0.3 0.866 113.5 48.5 -66.7 -37.1 6.7 -0.8 -11.0 8 8 A G H >< S+ 0 0 33 -4,-1.7 3,-2.2 1,-0.2 4,-0.4 0.883 100.3 63.5 -70.9 -39.1 9.3 1.5 -9.5 9 9 A C H >X S+ 0 0 7 -4,-2.9 4,-0.9 1,-0.3 3,-0.6 0.773 89.8 71.4 -56.0 -26.2 10.8 -1.1 -7.3 10 10 A I T 3< S+ 0 0 132 -4,-0.7 -1,-0.3 -3,-0.4 -2,-0.2 0.797 118.0 17.9 -61.1 -28.7 11.8 -2.9 -10.5 11 11 A G T <> S+ 0 0 32 -3,-2.2 4,-1.2 -4,-0.3 -1,-0.2 0.131 105.6 87.8-129.4 19.1 14.4 -0.2 -11.0 12 12 A S H <> S+ 0 0 11 -3,-0.6 4,-2.4 -4,-0.4 5,-0.3 0.828 81.1 59.8 -85.9 -36.3 14.7 1.3 -7.6 13 13 A C H X>S+ 0 0 24 -4,-0.9 4,-1.1 1,-0.2 5,-0.7 0.784 108.6 47.7 -62.3 -27.0 17.4 -1.1 -6.3 14 14 A V H 45S+ 0 0 108 2,-0.2 -1,-0.2 3,-0.2 -2,-0.2 0.938 115.1 40.8 -79.0 -51.4 19.6 0.1 -9.2 15 15 A I H <5S+ 0 0 158 -4,-1.2 -2,-0.2 1,-0.2 -1,-0.1 0.764 125.3 39.9 -68.3 -25.1 19.1 3.9 -8.7 16 16 A S H <5S- 0 0 72 -4,-2.4 -1,-0.2 -5,-0.1 -2,-0.2 0.717 90.8-153.8 -94.2 -26.4 19.3 3.3 -4.9 17 17 A E T <5 + 0 0 167 -4,-1.1 -3,-0.2 -5,-0.3 -4,-0.1 0.934 35.3 162.2 50.4 53.2 22.1 0.8 -5.1 18 18 A G < - 0 0 53 -5,-0.7 3,-0.1 -6,-0.1 -1,-0.1 -0.043 55.1 -87.6 -88.2-165.8 21.0 -0.8 -1.8 19 19 A I S S+ 0 0 180 1,-0.3 2,-0.3 2,-0.0 3,-0.1 0.921 105.2 0.9 -71.5 -45.7 21.8 -4.2 -0.2 20 20 A G >> - 0 0 26 1,-0.1 3,-1.6 0, 0.0 4,-0.9 -0.999 59.9-127.3-147.6 147.3 18.9 -6.0 -1.9 21 21 A S H 3> S+ 0 0 58 -2,-0.3 4,-1.2 1,-0.3 3,-0.3 0.813 107.5 70.3 -60.0 -30.6 16.1 -5.2 -4.4 22 22 A L H 34 S+ 0 0 153 1,-0.3 -1,-0.3 2,-0.2 4,-0.1 0.787 101.0 46.5 -57.6 -27.5 13.7 -6.8 -1.9 23 23 A V H X4 S+ 0 0 101 -3,-1.6 3,-1.5 1,-0.2 4,-0.5 0.753 99.9 67.2 -85.8 -27.3 14.3 -3.7 0.3 24 24 A G H >X S+ 0 0 10 -4,-0.9 3,-1.4 -3,-0.3 4,-0.7 0.812 84.7 72.1 -62.8 -30.1 13.9 -1.3 -2.6 25 25 A T T 3< S+ 0 0 75 -4,-1.2 3,-0.4 1,-0.3 -1,-0.3 0.744 90.3 61.9 -57.4 -22.9 10.3 -2.1 -2.8 26 26 A A T X> S+ 0 0 56 -3,-1.5 3,-1.5 1,-0.2 4,-0.7 0.816 90.8 64.9 -73.1 -31.6 9.9 -0.2 0.4 27 27 A F T <4 S+ 0 0 124 -3,-1.4 -1,-0.2 -4,-0.5 -2,-0.2 0.787 82.4 79.2 -61.6 -27.4 11.1 3.0 -1.2 28 28 A X T 3< S+ 0 0 50 -4,-0.7 -1,-0.3 -3,-0.4 -2,-0.2 0.822 90.7 55.3 -49.9 -33.6 7.9 2.9 -3.4 29 29 A L T <4 0 0 136 -3,-1.5 -1,-0.2 -4,-0.3 -2,-0.2 0.999 360.0 360.0 -64.2 -68.7 6.1 4.3 -0.4 30 30 A G < 0 0 89 -4,-0.7 -2,-0.2 0, 0.0 -1,-0.2 0.113 360.0 360.0-101.3 360.0 8.1 7.4 0.2