==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-JAN-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 27-FEB-11 2LA0 . COMPND 2 MOLECULE: UNCHARACTERIZED PROTEIN; . SOURCE 2 ORGANISM_SCIENTIFIC: BACILLUS CEREUS 95/8201; . AUTHOR C.S.SIT,R.T.MCKAY,C.HILL,R.P.ROSS,J.C.VEDERAS . 30 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2458.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 24 80.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 3.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 9 30.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 14 46.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G > 0 0 99 0, 0.0 4,-0.7 0, 0.0 3,-0.5 0.000 360.0 360.0 360.0-174.6 2.1 0.0 -1.2 2 2 A W H > + 0 0 208 1,-0.2 4,-2.0 2,-0.2 3,-0.3 0.778 360.0 68.3 -75.0 -27.5 3.0 2.7 -3.7 3 3 A V H > S+ 0 0 101 1,-0.2 4,-0.9 2,-0.2 -1,-0.2 0.781 97.1 54.7 -61.9 -26.9 -0.6 2.7 -5.1 4 4 A A H > S+ 0 0 67 -3,-0.5 4,-2.0 2,-0.2 -1,-0.2 0.840 105.9 51.1 -75.4 -34.8 -1.7 4.1 -1.8 5 5 A C H X S+ 0 0 17 -4,-0.7 4,-1.4 -3,-0.3 23,-0.2 0.948 108.8 49.0 -67.4 -50.4 0.7 7.1 -2.0 6 6 A V H < S+ 0 0 85 -4,-2.0 -1,-0.2 1,-0.2 4,-0.2 0.795 115.5 46.9 -60.2 -28.5 -0.3 8.1 -5.5 7 7 A G H >< S+ 0 0 53 -4,-0.9 3,-1.3 -5,-0.2 4,-0.3 0.825 104.9 57.5 -83.0 -33.7 -3.9 8.0 -4.4 8 8 A A H >X S+ 0 0 29 -4,-2.0 3,-1.4 1,-0.3 4,-0.8 0.764 88.1 78.0 -67.4 -25.1 -3.5 9.9 -1.1 9 9 A C H 3X S+ 0 0 0 -4,-1.4 4,-3.3 1,-0.3 5,-0.3 0.779 77.7 75.6 -54.9 -26.9 -2.1 12.8 -3.1 10 10 A G H <> S+ 0 0 33 -3,-1.3 4,-2.4 1,-0.2 -1,-0.3 0.904 91.2 51.8 -52.2 -46.2 -5.7 13.6 -4.0 11 11 A T H <> S+ 0 0 97 -3,-1.4 4,-1.2 -4,-0.3 -1,-0.2 0.868 115.2 43.0 -59.8 -37.8 -6.3 15.0 -0.5 12 12 A V H X S+ 0 0 60 -4,-0.8 4,-1.2 -3,-0.3 3,-0.4 0.963 114.0 47.4 -72.9 -55.0 -3.3 17.2 -0.9 13 13 A C H < S+ 0 0 6 -4,-3.3 6,-0.3 1,-0.2 3,-0.2 0.841 110.4 56.1 -55.5 -34.6 -3.9 18.3 -4.5 14 14 A L H >< S+ 0 0 127 -4,-2.4 3,-2.4 -5,-0.3 -1,-0.2 0.896 98.3 59.9 -65.6 -41.2 -7.5 19.1 -3.5 15 15 A A H 3< S+ 0 0 86 -4,-1.2 -1,-0.2 -3,-0.4 -2,-0.2 0.844 111.4 41.1 -55.5 -35.3 -6.4 21.4 -0.7 16 16 A S T >< S- 0 0 91 -4,-1.2 2,-1.6 -3,-0.2 3,-0.5 0.078 122.0-107.6-100.7 22.2 -4.7 23.5 -3.3 17 17 A G T < - 0 0 66 -3,-2.4 -4,-0.1 1,-0.2 -2,-0.1 -0.375 65.4 -67.0 86.5 -59.0 -7.6 23.1 -5.8 18 18 A G T 3 S+ 0 0 38 -2,-1.6 3,-0.4 -6,-0.1 -1,-0.2 0.520 77.5 146.0 140.4 42.1 -5.7 20.8 -8.1 19 19 A V S < S+ 0 0 142 -3,-0.5 3,-0.1 -6,-0.3 -2,-0.1 0.958 89.4 0.6 -65.8 -52.7 -2.9 22.6 -9.9 20 20 A G >> + 0 0 29 1,-0.1 4,-2.6 -7,-0.1 3,-0.8 -0.452 69.0 160.8-138.8 65.2 -0.6 19.6 -10.0 21 21 A T H 3> S+ 0 0 67 -3,-0.4 4,-1.4 1,-0.3 -8,-0.2 0.899 83.2 51.9 -50.4 -45.9 -2.2 16.6 -8.5 22 22 A E H 34 S+ 0 0 174 1,-0.2 4,-0.4 2,-0.2 -1,-0.3 0.817 110.8 49.9 -61.8 -30.9 0.2 14.3 -10.3 23 23 A F H X4 S+ 0 0 168 -3,-0.8 3,-1.8 1,-0.2 4,-0.4 0.937 106.9 51.3 -73.3 -49.0 3.0 16.4 -8.8 24 24 A A H >< S+ 0 0 25 -4,-2.6 3,-1.3 1,-0.3 4,-0.4 0.764 99.7 68.0 -59.7 -25.2 1.8 16.3 -5.2 25 25 A A T >X S+ 0 0 13 -4,-1.4 3,-0.6 -5,-0.3 4,-0.6 0.764 83.7 71.9 -66.2 -25.2 1.6 12.6 -5.6 26 26 A A H X> S+ 0 0 39 -3,-1.8 4,-2.8 -4,-0.4 3,-0.8 0.765 81.8 74.5 -61.5 -25.2 5.4 12.5 -5.9 27 27 A S H <4 S+ 0 0 45 -3,-1.3 -1,-0.2 -4,-0.4 -2,-0.2 0.939 91.0 52.6 -52.9 -52.9 5.5 13.3 -2.1 28 28 A X H <4 S+ 0 0 136 -3,-0.6 -1,-0.3 -4,-0.4 -2,-0.2 0.777 113.2 47.6 -55.2 -26.6 4.4 9.7 -1.2 29 29 A F H << 0 0 182 -3,-0.8 -2,-0.2 -4,-0.6 -1,-0.2 0.901 360.0 360.0 -81.5 -45.3 7.3 8.6 -3.4 30 30 A L < 0 0 175 -4,-2.8 -1,-0.2 0, 0.0 -4,-0.0 -0.686 360.0 360.0 -84.7 360.0 9.9 11.0 -1.9