==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-SEP-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 01-MAR-11 2LA2 . COMPND 2 MOLECULE: CECROPIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR Y.KIM,J.KIM . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3952.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 27 73.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 26 70.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 245 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 -41.3 2.1 0.0 -1.2 2 2 A W > + 0 0 192 3,-0.1 4,-3.2 4,-0.0 5,-0.4 0.508 360.0 53.2-137.5 -53.1 1.0 -3.5 -2.3 3 3 A K H > S+ 0 0 184 2,-0.2 4,-3.2 1,-0.2 5,-0.2 0.981 116.9 37.4 -53.9 -67.1 -0.8 -5.3 0.5 4 4 A I H > S+ 0 0 102 2,-0.2 4,-3.2 1,-0.2 5,-0.4 0.923 119.8 50.4 -51.8 -49.8 -3.4 -2.6 1.2 5 5 A F H > S+ 0 0 142 1,-0.2 4,-3.3 2,-0.2 5,-0.3 0.976 114.9 40.2 -53.1 -65.2 -3.7 -1.8 -2.5 6 6 A K H X S+ 0 0 123 -4,-3.2 4,-3.1 2,-0.2 5,-0.3 0.882 118.8 51.1 -52.6 -41.5 -4.2 -5.3 -3.7 7 7 A K H X S+ 0 0 131 -4,-3.2 4,-3.2 -5,-0.4 5,-0.4 0.995 114.9 37.8 -60.1 -68.1 -6.5 -5.9 -0.7 8 8 A I H X S+ 0 0 104 -4,-3.2 4,-2.1 1,-0.2 -2,-0.2 0.875 119.3 51.8 -52.0 -40.8 -8.8 -2.9 -1.0 9 9 A E H X S+ 0 0 142 -4,-3.3 4,-1.5 -5,-0.4 -1,-0.2 0.942 116.1 38.7 -62.6 -49.5 -8.7 -3.4 -4.8 10 10 A K H X S+ 0 0 130 -4,-3.1 4,-3.2 -5,-0.3 3,-0.5 0.980 118.3 46.4 -65.4 -58.7 -9.6 -7.1 -4.6 11 11 A V H X S+ 0 0 74 -4,-3.2 4,-2.3 -5,-0.3 5,-0.4 0.851 108.3 60.4 -52.9 -36.7 -12.1 -6.8 -1.8 12 12 A G H X S+ 0 0 41 -4,-2.1 4,-1.3 -5,-0.4 -1,-0.2 0.929 114.3 32.2 -58.2 -48.3 -13.6 -3.8 -3.6 13 13 A R H X S+ 0 0 174 -4,-1.5 4,-3.2 -3,-0.5 5,-0.3 0.813 115.3 61.8 -78.8 -32.2 -14.5 -5.9 -6.7 14 14 A N H X S+ 0 0 96 -4,-3.2 4,-3.1 2,-0.2 5,-0.2 0.982 108.0 39.5 -56.8 -63.6 -15.1 -9.0 -4.7 15 15 A V H X S+ 0 0 51 -4,-2.3 4,-3.1 2,-0.2 5,-0.3 0.947 119.7 46.7 -51.7 -56.0 -18.0 -7.7 -2.6 16 16 A R H X S+ 0 0 180 -4,-1.3 4,-3.2 -5,-0.4 5,-0.3 0.953 114.7 45.9 -52.0 -57.6 -19.5 -5.8 -5.6 17 17 A D H X S+ 0 0 66 -4,-3.2 4,-3.1 1,-0.2 -1,-0.2 0.882 114.7 49.7 -54.3 -41.1 -19.2 -8.7 -8.0 18 18 A G H X>S+ 0 0 31 -4,-3.1 4,-1.5 -5,-0.3 5,-1.1 0.904 114.0 43.4 -66.2 -42.4 -20.6 -11.0 -5.3 19 19 A I H <5S+ 0 0 56 -4,-3.1 -2,-0.2 -5,-0.2 -1,-0.2 0.859 119.4 43.8 -71.2 -36.5 -23.6 -8.7 -4.6 20 20 A I H <5S+ 0 0 129 -4,-3.2 -2,-0.2 -5,-0.3 -3,-0.2 0.917 112.0 52.9 -74.3 -45.5 -24.2 -8.1 -8.3 21 21 A K H <5S- 0 0 175 -4,-3.1 -2,-0.2 -5,-0.3 -3,-0.2 0.981 139.0 -11.0 -52.8 -69.6 -23.8 -11.7 -9.3 22 22 A A T <5S- 0 0 90 -4,-1.5 -3,-0.2 -5,-0.2 -4,-0.1 0.879 81.8-139.7 -97.4 -67.8 -26.3 -13.3 -6.9 23 23 A G < - 0 0 43 -5,-1.1 -4,-0.2 5,-0.0 -3,-0.1 0.853 18.6-158.6 101.3 67.3 -27.3 -10.6 -4.3 24 24 A P - 0 0 61 0, 0.0 4,-0.4 0, 0.0 5,-0.1 -0.152 15.5-141.3 -69.8 168.0 -27.5 -12.2 -0.8 25 25 A A S > S+ 0 0 69 3,-0.1 4,-3.2 2,-0.1 5,-0.4 0.781 94.1 60.1 -99.6 -37.4 -29.5 -10.7 2.0 26 26 A V H > S+ 0 0 126 2,-0.2 4,-3.2 1,-0.2 5,-0.3 0.961 108.9 43.0 -55.5 -56.9 -27.1 -11.4 4.9 27 27 A A H > S+ 0 0 46 2,-0.2 4,-3.2 3,-0.2 5,-0.3 0.939 118.7 45.4 -55.6 -51.3 -24.3 -9.3 3.4 28 28 A V H > S+ 0 0 68 -4,-0.4 4,-3.2 2,-0.2 5,-0.4 0.979 117.7 41.5 -57.0 -62.0 -26.6 -6.5 2.4 29 29 A V H X S+ 0 0 93 -4,-3.2 4,-3.2 2,-0.2 5,-0.3 0.937 119.9 45.2 -52.0 -53.1 -28.5 -6.3 5.7 30 30 A G H X S+ 0 0 32 -4,-3.2 4,-3.2 -5,-0.4 5,-0.2 0.968 117.3 42.3 -56.5 -59.0 -25.4 -6.8 7.8 31 31 A Q H X S+ 0 0 110 -4,-3.2 4,-3.1 -5,-0.3 5,-0.2 0.956 119.3 44.3 -53.2 -57.3 -23.3 -4.3 5.8 32 32 A A H X S+ 0 0 47 -4,-3.2 4,-3.1 -5,-0.3 5,-0.2 0.950 115.6 47.0 -53.0 -55.8 -26.0 -1.7 5.5 33 33 A A H X S+ 0 0 53 -4,-3.2 4,-3.2 -5,-0.4 -1,-0.2 0.896 114.6 48.0 -54.2 -43.6 -27.1 -2.1 9.2 34 34 A T H < S+ 0 0 108 -4,-3.2 -1,-0.2 -5,-0.3 -2,-0.2 0.900 113.8 46.4 -65.2 -42.1 -23.5 -1.9 10.3 35 35 A V H < S+ 0 0 116 -4,-3.1 -2,-0.2 -5,-0.2 -1,-0.2 0.876 119.4 41.0 -68.2 -38.5 -22.8 1.2 8.1 36 36 A V H < 0 0 108 -4,-3.1 -2,-0.2 -5,-0.2 -3,-0.2 0.968 360.0 360.0 -73.6 -56.7 -26.1 2.9 9.3 37 37 A K < 0 0 214 -4,-3.2 -3,-0.2 -5,-0.2 -4,-0.1 0.870 360.0 360.0 -98.9 360.0 -25.9 1.9 13.0