==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=3-JUL-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIVIRAL PROTEIN 16-MAR-11 2LAM . COMPND 2 MOLECULE: CYCLOTIDE CTER M; . SOURCE 2 SYNTHETIC: YES; . AUTHOR A.G.POTH,M.L.COLGRAVE,R.E.LYONS,N.L.DALY,D.J.CRAIK . 29 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2112.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 17 58.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 6 20.7 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 3.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 24.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 49 0, 0.0 28,-0.3 0, 0.0 21,-0.0 0.000 360.0 360.0 360.0 -19.5 2.7 8.6 0.0 2 2 A L B -A 28 0A 96 26,-1.7 26,-3.5 1,-0.1 2,-1.1 -0.766 360.0-154.1 -89.7 115.5 3.9 7.3 -3.4 3 3 A P > + 0 0 68 0, 0.0 3,-0.8 0, 0.0 24,-0.1 -0.103 56.0 126.3 -79.0 40.4 1.5 4.7 -4.8 4 4 A T T 3 + 0 0 115 -2,-1.1 23,-0.1 1,-0.2 -2,-0.0 0.094 48.0 87.5 -85.6 23.3 4.4 3.2 -6.8 5 5 A a T 3 S- 0 0 19 21,-0.7 -1,-0.2 2,-0.2 22,-0.1 0.785 82.9-142.6 -89.7 -33.8 3.7 -0.2 -5.3 6 6 A G < + 0 0 73 -3,-0.8 2,-0.3 20,-0.4 -2,-0.1 0.890 60.9 115.1 70.1 39.3 1.1 -1.3 -7.9 7 7 A E - 0 0 17 19,-0.4 19,-3.1 -4,-0.1 2,-0.5 -0.986 55.4-147.8-140.9 149.5 -1.0 -3.0 -5.2 8 8 A T - 0 0 87 -2,-0.3 2,-1.5 17,-0.3 3,-0.3 -0.956 3.1-159.9-122.6 112.7 -4.4 -2.5 -3.7 9 9 A b + 0 0 2 -2,-0.5 3,-0.3 15,-0.4 14,-0.1 -0.405 33.3 150.8 -88.6 60.9 -4.9 -3.4 -0.1 10 10 A T S S+ 0 0 89 -2,-1.5 -1,-0.2 1,-0.3 15,-0.1 0.856 80.6 43.9 -58.1 -35.1 -8.7 -3.7 -0.3 11 11 A L S S- 0 0 168 -3,-0.3 -1,-0.3 2,-0.2 -2,-0.1 0.681 127.7-101.7 -82.1 -21.1 -8.5 -6.2 2.5 12 12 A G S S+ 0 0 39 -3,-0.3 2,-0.3 1,-0.3 -2,-0.1 0.807 87.1 100.1 101.0 40.8 -6.0 -4.0 4.4 13 13 A T - 0 0 106 7,-0.1 2,-0.5 -5,-0.0 -1,-0.3 -0.944 49.6-158.6-157.7 133.1 -2.7 -5.7 3.6 14 14 A c - 0 0 24 -2,-0.3 5,-0.1 5,-0.2 4,-0.1 -0.965 5.2-172.9-118.2 120.0 0.1 -5.0 1.2 15 15 A Y + 0 0 190 -2,-0.5 -1,-0.1 2,-0.1 3,-0.1 0.700 57.0 107.1 -81.4 -21.0 2.5 -7.8 0.3 16 16 A V S > S- 0 0 31 1,-0.1 3,-2.2 2,-0.1 -2,-0.1 -0.396 88.6 -94.7 -62.4 128.4 4.8 -5.5 -1.6 17 17 A P T 3 S- 0 0 112 0, 0.0 -1,-0.1 0, 0.0 3,-0.1 -0.214 101.0 -7.6 -51.3 125.4 8.0 -4.9 0.4 18 18 A D T 3 S+ 0 0 119 1,-0.2 2,-0.5 -4,-0.1 -2,-0.1 0.544 97.5 141.3 64.0 11.3 7.9 -1.8 2.6 19 19 A a < - 0 0 22 -3,-2.2 2,-0.3 -5,-0.1 -5,-0.2 -0.722 42.3-145.4 -89.2 126.6 4.6 -0.8 1.1 20 20 A S E -B 27 0B 61 7,-1.7 7,-2.9 -2,-0.5 2,-0.8 -0.665 21.9-109.4 -90.4 143.4 2.1 0.8 3.4 21 21 A b E +B 26 0B 57 -2,-0.3 5,-0.2 5,-0.2 2,-0.2 -0.615 36.5 173.0 -76.0 109.7 -1.6 0.2 3.0 22 22 A S E > -B 25 0B 45 3,-1.5 3,-1.4 -2,-0.8 -1,-0.1 -0.438 54.0-100.5-111.4 50.5 -3.1 3.5 1.9 23 23 A W T 3 S+ 0 0 175 1,-0.4 -13,-0.1 -2,-0.2 -15,-0.0 0.298 101.7 13.0 -20.8 130.5 -6.5 1.9 1.4 24 24 A P T 3 S+ 0 0 56 0, 0.0 -1,-0.4 0, 0.0 -15,-0.4 -0.997 136.0 38.4 -83.6 -2.8 -7.6 1.1 -1.1 25 25 A I E < S-B 22 0B 69 -3,-1.4 -3,-1.5 -17,-0.3 2,-0.4 -0.801 78.8-121.4-106.7 148.4 -4.2 1.5 -2.7 26 26 A c E -B 21 0B 0 -19,-3.1 -21,-0.7 -2,-0.3 -19,-0.4 -0.703 33.6-176.7 -87.6 133.4 -0.8 0.7 -1.3 27 27 A M E -B 20 0B 51 -7,-2.9 -7,-1.7 -2,-0.4 2,-0.7 -0.982 24.6-142.4-133.2 145.2 1.7 3.6 -1.1 28 28 A K B A 2 0A 41 -26,-3.5 -26,-1.7 -2,-0.4 -24,-0.2 -0.901 360.0 360.0-108.2 104.2 5.3 3.9 0.0 29 29 A N 0 0 131 -2,-0.7 -1,-0.2 -28,-0.3 -10,-0.0 0.844 360.0 360.0 61.8 360.0 5.7 7.2 1.8