==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-JUN-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 21-MAR-11 2LAT . COMPND 2 MOLECULE: DOLICHYL-DIPHOSPHOOLIGOSACCHARIDE--PROTEIN . SOURCE 2 SYNTHETIC: YES; . AUTHOR S.GAYEN,C.KANG . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4057.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 30 81.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 24 64.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 222 0, 0.0 3,-0.1 0, 0.0 4,-0.0 0.000 360.0 360.0 360.0 -26.6 1.9 -0.7 -0.9 2 2 A I - 0 0 163 1,-0.5 2,-0.3 0, 0.0 0, 0.0 0.608 360.0 -14.9-116.7 -25.8 0.7 2.5 -2.4 3 3 A T S S+ 0 0 95 1,-0.0 -1,-0.5 0, 0.0 0, 0.0 -0.965 116.8 34.8-172.8 159.6 1.8 5.1 0.2 4 4 A D >> + 0 0 128 -2,-0.3 3,-0.7 1,-0.1 4,-0.6 0.775 65.5 144.9 58.2 26.1 3.1 5.4 3.8 5 5 A V H 3> + 0 0 62 1,-0.2 4,-0.5 2,-0.2 3,-0.2 0.657 56.6 74.5 -67.9 -14.9 4.9 2.1 3.3 6 6 A Q H >> S+ 0 0 142 1,-0.2 3,-1.8 2,-0.2 4,-0.6 0.917 86.9 58.2 -64.0 -44.8 7.6 3.5 5.5 7 7 A L H X> S+ 0 0 119 -3,-0.7 4,-2.0 1,-0.3 3,-1.4 0.827 91.4 72.5 -54.8 -32.8 5.6 3.1 8.6 8 8 A A H 3X S+ 0 0 47 -4,-0.6 4,-3.2 1,-0.3 5,-0.3 0.842 91.8 56.7 -51.5 -36.0 5.4 -0.6 7.8 9 9 A I H X S+ 0 0 120 -4,-3.2 4,-2.6 -5,-0.2 3,-0.6 0.865 113.0 47.7 -64.4 -37.0 6.9 -5.0 11.3 13 13 A M H 3X S+ 0 0 120 -4,-1.0 4,-1.2 -5,-0.3 -1,-0.2 0.843 100.4 65.3 -72.5 -34.6 9.8 -4.4 13.6 14 14 A L H 3< S+ 0 0 114 -4,-0.9 4,-0.3 1,-0.2 -1,-0.2 0.698 117.4 28.4 -61.2 -18.0 7.6 -3.8 16.6 15 15 A G H S+ 0 0 128 -3,-0.4 4,-0.6 -4,-0.3 -2,-0.2 0.636 124.8 47.0 -73.7 -13.8 8.5 -10.7 20.0 19 19 A F H X S+ 0 0 139 -4,-1.8 4,-3.0 2,-0.2 3,-0.3 0.927 111.9 41.9 -90.0 -65.5 8.4 -13.0 17.0 20 20 A L H X S+ 0 0 92 -4,-2.6 4,-2.6 1,-0.2 5,-0.2 0.841 114.4 57.0 -51.7 -35.4 12.0 -13.8 16.0 21 21 A L H X S+ 0 0 110 -4,-1.4 4,-1.4 -5,-0.4 -1,-0.2 0.939 111.3 39.9 -62.5 -48.9 12.7 -14.1 19.7 22 22 A V H X S+ 0 0 80 -4,-0.6 4,-3.0 -3,-0.3 5,-0.3 0.927 115.3 52.2 -66.7 -46.4 10.1 -16.8 20.2 23 23 A V H X S+ 0 0 73 -4,-3.0 4,-2.1 1,-0.2 -2,-0.2 0.941 114.7 41.2 -55.2 -52.0 10.9 -18.6 17.0 24 24 A L H X S+ 0 0 102 -4,-2.6 4,-2.2 -5,-0.2 5,-0.2 0.772 113.9 56.6 -68.0 -26.1 14.6 -18.8 17.8 25 25 A Y H X S+ 0 0 118 -4,-1.4 4,-2.5 -5,-0.2 -2,-0.2 0.942 109.6 41.8 -70.7 -49.5 13.7 -19.7 21.4 26 26 A H H X S+ 0 0 126 -4,-3.0 4,-1.7 2,-0.2 -2,-0.2 0.895 117.4 49.0 -65.0 -41.1 11.6 -22.7 20.5 27 27 A Y H X S+ 0 0 145 -4,-2.1 4,-2.1 -5,-0.3 3,-0.3 0.972 116.8 39.2 -63.1 -56.5 14.2 -23.8 17.9 28 28 A V H X S+ 0 0 48 -4,-2.2 4,-2.2 1,-0.2 -2,-0.2 0.867 115.0 54.9 -62.1 -37.4 17.2 -23.5 20.1 29 29 A A H < S+ 0 0 15 -4,-2.5 6,-0.3 -5,-0.2 -1,-0.2 0.833 115.1 39.0 -65.4 -32.9 15.3 -24.9 23.0 30 30 A V H < S+ 0 0 117 -4,-1.7 -2,-0.2 -3,-0.3 -1,-0.2 0.701 119.5 46.7 -88.8 -22.9 14.4 -28.0 21.0 31 31 A N H < S+ 0 0 93 -4,-2.1 -2,-0.2 -5,-0.2 -3,-0.2 0.665 105.8 68.6 -90.8 -20.0 17.8 -28.2 19.4 32 32 A N >< - 0 0 77 -4,-2.2 3,-0.6 -5,-0.2 -1,-0.1 -0.890 67.0-154.1-106.8 126.1 19.6 -27.7 22.7 33 33 A P T 3 S+ 0 0 107 0, 0.0 -1,-0.1 0, 0.0 2,-0.1 0.609 96.9 45.8 -69.7 -11.7 19.5 -30.5 25.4 34 34 A K T 3 S- 0 0 173 2,-0.0 -5,-0.0 -3,-0.0 -3,-0.0 -0.517 83.1-169.8-132.0 65.7 20.1 -27.8 28.0 35 35 A K < - 0 0 128 -3,-0.6 2,-0.7 -6,-0.3 -6,-0.1 0.056 27.2-109.9 -48.9 165.3 17.8 -24.9 27.1 36 36 A Q 0 0 176 -4,-0.0 -1,-0.1 0, 0.0 -7,-0.1 -0.902 360.0 360.0-109.2 110.5 18.3 -21.6 29.0 37 37 A E 0 0 217 -2,-0.7 0, 0.0 0, 0.0 0, 0.0 -0.895 360.0 360.0-109.5 360.0 15.6 -20.7 31.5