==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=14-MAR-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER MEMBRANE PROTEIN 02-MAY-11 2LCM . COMPND 2 MOLECULE: VOLTAGE-DEPENDENT N-TYPE CALCIUM CHANNEL SUBUNIT . SOURCE 2 SYNTHETIC: YES; . AUTHOR B.DOUZI,H.DARBON,M.DE WAAR . 28 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3064.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 19 67.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 10.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 16 57.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 199 0, 0.0 2,-0.3 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0-162.1 3.0 -1.8 -0.1 2 2 A D > - 0 0 92 1,-0.1 4,-1.3 0, 0.0 5,-0.2 -0.901 360.0-119.0-128.2 158.3 3.0 -4.9 -2.2 3 3 A I H > S+ 0 0 128 -2,-0.3 4,-1.5 1,-0.2 5,-0.1 0.857 117.1 54.6 -65.5 -31.6 2.9 -5.4 -5.9 4 4 A N H > S+ 0 0 114 2,-0.2 4,-0.7 1,-0.2 -1,-0.2 0.895 105.2 50.6 -69.8 -36.6 -0.4 -7.2 -5.4 5 5 A T H > S+ 0 0 53 1,-0.2 4,-0.9 2,-0.2 -1,-0.2 0.759 107.4 55.3 -74.3 -19.2 -1.9 -4.3 -3.6 6 6 A I H X S+ 0 0 77 -4,-1.3 4,-1.3 2,-0.2 -1,-0.2 0.823 105.0 52.7 -75.9 -29.7 -0.8 -2.2 -6.5 7 7 A K H X S+ 0 0 105 -4,-1.5 4,-2.4 1,-0.2 5,-0.5 0.651 98.4 64.1 -79.5 -10.8 -2.7 -4.6 -8.6 8 8 A S H X S+ 0 0 52 -4,-0.7 4,-1.3 2,-0.2 5,-0.3 0.875 104.1 46.9 -74.0 -33.7 -5.7 -3.9 -6.3 9 9 A L H < S+ 0 0 104 -4,-0.9 4,-0.4 3,-0.2 -2,-0.2 0.816 122.4 37.3 -73.0 -32.8 -5.4 -0.4 -7.6 10 10 A R H >< S+ 0 0 170 -4,-1.3 3,-0.6 2,-0.1 -2,-0.2 0.965 119.7 40.4 -80.1 -69.3 -5.2 -1.8 -11.1 11 11 A V H >X S+ 0 0 65 -4,-2.4 4,-3.2 1,-0.3 3,-1.0 0.797 116.7 49.5 -58.4 -35.4 -7.5 -4.8 -11.2 12 12 A L H 3X S+ 0 0 98 -4,-1.3 4,-1.4 -5,-0.5 -1,-0.3 0.884 110.9 50.0 -75.0 -30.3 -10.3 -3.2 -9.2 13 13 A R H <4 S+ 0 0 170 -3,-0.6 -1,-0.3 -4,-0.4 -2,-0.2 0.291 116.3 45.9 -86.5 6.8 -10.1 -0.2 -11.4 14 14 A V H <> S+ 0 0 52 -3,-1.0 4,-1.9 3,-0.1 5,-0.2 0.711 116.7 37.7-103.3 -60.8 -10.4 -2.6 -14.2 15 15 A L H X S+ 0 0 85 -4,-3.2 4,-2.0 1,-0.2 5,-0.2 0.931 119.5 43.3 -58.3 -56.4 -13.2 -4.9 -13.1 16 16 A R H X S+ 0 0 184 -4,-1.4 4,-1.6 -5,-0.3 -1,-0.2 0.923 116.8 42.1 -64.3 -51.3 -15.5 -2.6 -11.5 17 17 A P H > S+ 0 0 22 0, 0.0 4,-1.4 0, 0.0 -1,-0.2 0.882 114.6 53.9 -67.2 -31.5 -15.4 0.4 -14.0 18 18 A L H X S+ 0 0 62 -4,-1.9 4,-2.6 1,-0.2 5,-0.3 0.855 105.7 51.1 -74.3 -32.6 -15.6 -2.0 -16.9 19 19 A K H X S+ 0 0 106 -4,-2.0 4,-0.7 1,-0.2 -1,-0.2 0.862 108.9 52.3 -69.3 -29.7 -18.6 -3.7 -15.6 20 20 A T H < S+ 0 0 70 -4,-1.6 -2,-0.2 -5,-0.2 -1,-0.2 0.802 123.5 28.2 -75.4 -26.8 -20.2 -0.4 -15.2 21 21 A I H >< S+ 0 0 92 -4,-1.4 3,-2.1 -5,-0.1 -2,-0.2 0.901 121.4 47.9 -93.0 -62.8 -19.3 0.4 -18.9 22 22 A K H 3X S+ 0 0 100 -4,-2.6 4,-1.6 1,-0.3 -3,-0.2 0.506 88.4 86.0 -63.9 -7.7 -19.3 -2.9 -20.6 23 23 A R T 3< S+ 0 0 143 -4,-0.7 4,-0.3 -5,-0.3 -1,-0.3 0.762 88.0 58.0 -60.9 -22.2 -22.6 -3.9 -19.0 24 24 A L T <4 S+ 0 0 137 -3,-2.1 3,-0.3 2,-0.2 -2,-0.2 0.977 123.5 12.2 -76.9 -57.8 -24.1 -2.1 -22.0 25 25 A P T 4 S+ 0 0 96 0, 0.0 -2,-0.2 0, 0.0 -1,-0.1 0.452 137.2 41.8-100.4 1.8 -22.7 -4.0 -25.1 26 26 A K S < S+ 0 0 136 -4,-1.6 -2,-0.2 -5,-0.2 -3,-0.1 -0.037 78.3 171.2-136.8 29.9 -21.3 -6.9 -23.2 27 27 A L 0 0 136 -3,-0.3 -4,-0.1 -4,-0.3 -3,-0.1 -0.133 360.0 360.0 -51.0 131.0 -24.1 -7.6 -20.7 28 28 A K 0 0 216 -5,-0.0 -1,-0.2 0, 0.0 -5,-0.0 0.431 360.0 360.0-136.9 360.0 -23.5 -10.9 -18.9