==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=25-MAR-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION/DNA 14-MAY-11 2LD5 . COMPND 2 MOLECULE: HOMEOBOX PROTEIN HOX-A13; . SOURCE 2 ORGANISM_SCIENTIFIC: MUS MUSCULUS; . AUTHOR Y.ZHANG . 67 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 6060.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 45 67.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 4 6.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 38 56.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.5 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 7 A G 0 0 116 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-122.0 -6.5 -13.8 12.6 2 8 A R + 0 0 213 1,-0.2 2,-0.3 2,-0.0 0, 0.0 0.953 360.0 111.4 57.2 55.9 -7.7 -10.4 13.7 3 9 A K - 0 0 120 1,-0.1 -1,-0.2 3,-0.0 3,-0.1 -0.985 50.4-157.4-152.5 157.8 -7.9 -8.9 10.2 4 10 A K S S+ 0 0 191 -2,-0.3 -1,-0.1 1,-0.3 -2,-0.0 0.660 71.8 29.5-101.7 -99.4 -10.5 -7.7 7.7 5 11 A R S S- 0 0 227 1,-0.1 -1,-0.3 0, 0.0 0, 0.0 -0.255 81.6-120.0 -64.8 148.7 -9.7 -7.7 4.0 6 12 A V - 0 0 99 -3,-0.1 -1,-0.1 1,-0.1 2,-0.1 -0.699 23.0-141.7 -93.6 144.1 -7.2 -10.2 2.6 7 13 A P - 0 0 85 0, 0.0 3,-0.1 0, 0.0 -1,-0.1 -0.174 21.1-101.0 -90.0-172.8 -3.9 -9.2 0.9 8 14 A Y S S- 0 0 168 1,-0.3 2,-0.3 -2,-0.1 3,-0.0 0.594 78.2 -18.6 -80.6-125.3 -2.1 -10.7 -2.0 9 15 A T > - 0 0 70 1,-0.1 4,-2.0 29,-0.1 3,-0.3 -0.694 49.1-141.9 -90.2 138.1 1.0 -13.0 -1.6 10 16 A K H > S+ 0 0 180 -2,-0.3 4,-2.4 1,-0.2 5,-0.1 0.808 104.6 58.1 -65.5 -28.8 2.9 -13.0 1.6 11 17 A V H > S+ 0 0 77 2,-0.2 4,-2.4 1,-0.2 -1,-0.2 0.862 105.2 50.2 -68.3 -35.4 6.1 -13.4 -0.4 12 18 A Q H > S+ 0 0 2 -3,-0.3 4,-2.2 2,-0.2 -2,-0.2 0.952 113.7 43.4 -66.9 -50.9 5.3 -10.1 -2.2 13 19 A L H X S+ 0 0 29 -4,-2.0 4,-2.5 2,-0.2 5,-0.2 0.897 113.6 53.0 -62.0 -41.3 4.6 -8.2 1.0 14 20 A K H X S+ 0 0 111 -4,-2.4 4,-1.9 1,-0.2 -2,-0.2 0.946 113.0 41.6 -59.9 -52.2 7.7 -9.7 2.6 15 21 A E H X S+ 0 0 33 -4,-2.4 4,-2.5 1,-0.2 5,-0.3 0.838 111.9 57.7 -65.7 -32.1 10.1 -8.8 -0.2 16 22 A L H X S+ 0 0 0 -4,-2.2 4,-2.1 1,-0.2 -2,-0.2 0.929 109.0 44.0 -63.0 -45.7 8.3 -5.4 -0.4 17 23 A E H X S+ 0 0 89 -4,-2.5 4,-2.4 2,-0.2 -1,-0.2 0.842 111.2 57.6 -67.2 -33.7 9.2 -4.7 3.3 18 24 A R H X S+ 0 0 135 -4,-1.9 4,-1.0 2,-0.2 -2,-0.2 0.970 112.3 36.6 -60.9 -57.7 12.7 -6.0 2.7 19 25 A E H X S+ 0 0 2 -4,-2.5 4,-0.8 1,-0.2 5,-0.4 0.857 116.0 56.4 -65.1 -35.3 13.6 -3.6 -0.1 20 26 A Y H >< S+ 0 0 24 -4,-2.1 3,-0.8 -5,-0.3 -1,-0.2 0.899 106.6 48.9 -62.9 -41.6 11.6 -0.8 1.7 21 27 A A H 3< S+ 0 0 73 -4,-2.4 -1,-0.2 1,-0.2 -2,-0.2 0.701 97.8 70.1 -72.5 -20.0 13.7 -1.3 4.8 22 28 A T H 3< S- 0 0 100 -4,-1.0 -1,-0.2 -3,-0.3 -2,-0.2 0.821 137.1 -47.8 -66.3 -29.3 16.9 -1.2 2.8 23 29 A N S << S- 0 0 123 -3,-0.8 -3,-0.1 -4,-0.8 3,-0.1 0.040 78.8 -86.3-163.9 -71.7 16.2 2.5 2.2 24 30 A K S S+ 0 0 111 -5,-0.4 2,-0.3 1,-0.4 -3,-0.1 -0.075 101.6 19.4 174.6 -47.5 12.7 3.5 1.1 25 31 A F - 0 0 75 -5,-0.1 -1,-0.4 -4,-0.1 2,-0.3 -0.916 66.6-153.7-138.5 161.3 12.7 3.1 -2.6 26 32 A I - 0 0 42 -2,-0.3 -6,-0.0 1,-0.1 -7,-0.0 -0.809 24.8 -89.4-133.1 174.0 14.9 1.3 -5.1 27 33 A T > - 0 0 84 -2,-0.3 4,-2.3 1,-0.1 3,-0.2 -0.161 43.7-101.0 -76.4 175.2 16.0 1.5 -8.8 28 34 A K H > S+ 0 0 138 1,-0.2 4,-2.4 2,-0.2 5,-0.2 0.856 121.8 59.3 -67.5 -34.3 14.3 -0.1 -11.7 29 35 A D H > S+ 0 0 115 1,-0.2 4,-0.9 2,-0.2 -1,-0.2 0.860 110.5 42.7 -62.4 -34.2 16.8 -2.9 -11.7 30 36 A K H > S+ 0 0 73 -3,-0.2 4,-1.6 2,-0.2 -2,-0.2 0.896 112.5 51.3 -78.7 -41.8 15.8 -3.8 -8.2 31 37 A R H X S+ 0 0 51 -4,-2.3 4,-2.6 1,-0.2 -2,-0.2 0.845 107.1 55.5 -63.9 -33.2 12.0 -3.4 -8.8 32 38 A R H X S+ 0 0 163 -4,-2.4 4,-2.9 2,-0.2 -1,-0.2 0.856 102.4 56.6 -67.2 -34.4 12.3 -5.7 -11.8 33 39 A R H X S+ 0 0 94 -4,-0.9 4,-1.2 2,-0.2 -2,-0.2 0.930 111.8 41.6 -61.9 -45.1 13.9 -8.3 -9.5 34 40 A I H X S+ 0 0 2 -4,-1.6 4,-2.5 2,-0.2 6,-0.2 0.908 113.7 53.9 -68.0 -42.0 10.8 -8.2 -7.3 35 41 A S H X>S+ 0 0 6 -4,-2.6 5,-1.9 1,-0.2 4,-1.1 0.922 107.4 49.2 -58.9 -48.3 8.5 -8.0 -10.3 36 42 A A H <5S+ 0 0 77 -4,-2.9 -1,-0.2 1,-0.2 -2,-0.2 0.812 114.5 46.7 -62.8 -30.1 10.0 -11.2 -11.9 37 43 A T H <5S+ 0 0 85 -4,-1.2 -1,-0.2 -5,-0.2 -2,-0.2 0.849 118.3 39.4 -81.1 -34.9 9.6 -13.0 -8.6 38 44 A T H <5S- 0 0 22 -4,-2.5 -2,-0.2 -5,-0.1 -1,-0.2 0.446 107.1-123.2 -93.7 -1.7 6.0 -11.8 -7.9 39 45 A N T <5 + 0 0 149 -4,-1.1 -3,-0.2 -5,-0.2 -4,-0.1 0.778 62.4 148.3 63.8 28.9 5.1 -12.2 -11.6 40 46 A L < - 0 0 45 -5,-1.9 -1,-0.1 -6,-0.2 3,-0.0 -0.151 61.1-114.3 -84.6-177.5 4.0 -8.6 -11.6 41 47 A S - 0 0 84 -3,-0.1 2,-2.8 1,-0.1 -9,-0.1 0.018 44.3-118.1-108.0 25.1 4.1 -6.1 -14.4 42 48 A E S > S+ 0 0 49 1,-0.2 4,-1.2 -11,-0.2 3,-0.5 -0.256 106.2 74.5 71.1 -53.3 6.8 -3.8 -12.8 43 49 A R H >> S+ 0 0 168 -2,-2.8 4,-1.2 1,-0.3 3,-0.7 0.926 95.5 47.1 -54.9 -51.0 4.3 -0.9 -12.7 44 50 A Q H 3> S+ 0 0 67 1,-0.2 4,-2.3 2,-0.2 -1,-0.3 0.745 101.8 67.4 -66.1 -22.1 2.3 -2.3 -9.8 45 51 A V H 3> S+ 0 0 1 -3,-0.5 4,-1.0 1,-0.2 -1,-0.2 0.902 102.1 45.7 -64.6 -39.7 5.6 -3.0 -8.0 46 52 A T H X S+ 0 0 106 -4,-1.4 3,-1.0 1,-0.2 4,-0.9 0.885 109.9 57.7 -67.5 -37.9 3.8 3.8 -2.2 51 57 A N H 3X S+ 0 0 73 -4,-2.3 4,-1.4 1,-0.3 3,-0.4 0.819 96.8 62.4 -61.6 -32.5 1.1 1.7 -0.6 52 58 A R H 3X S+ 0 0 48 -4,-1.6 4,-1.6 1,-0.2 -1,-0.3 0.802 95.8 60.8 -64.9 -27.6 3.5 0.7 2.1 53 59 A R H < S+ 0 0 132 -4,-1.7 2,-2.6 1,-0.2 3,-1.2 0.833 94.7 77.4 -75.3 -32.8 -4.8 1.9 15.2 63 69 A L T 3< S+ 0 0 137 -4,-2.1 -1,-0.2 1,-0.2 -4,-0.0 -0.412 80.5 73.3 -77.5 65.3 -2.3 2.1 18.0 64 70 A K T 3 S- 0 0 123 -2,-2.6 -1,-0.2 -3,-0.1 -2,-0.1 0.436 75.4-152.4-142.4 -39.3 -4.5 4.6 19.9 65 71 A T < + 0 0 127 -3,-1.2 -2,-0.1 -4,-0.2 -3,-0.1 0.906 47.1 139.1 56.3 45.0 -7.4 2.6 21.3 66 72 A T 0 0 125 -4,-0.1 -1,-0.1 0, 0.0 -4,-0.0 0.471 360.0 360.0 -95.2 -3.7 -9.6 5.6 21.3 67 73 A S 0 0 173 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.727 360.0 360.0-118.4 360.0 -12.6 3.6 20.0