==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TRANSCRIPTION REGULATION 11-MAY-94 1LEB . COMPND 2 MOLECULE: LEXA REPRESSOR DNA BINDING DOMAIN; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR R.H.FOGH,G.OTTLEBEN,H.RUETERJANS,M.SCHNARR,R.BOELENS, . 72 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4706.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 49 68.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 4 5.6 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 9.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 32 44.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 3 4.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 157 0, 0.0 2,-0.5 0, 0.0 69,-0.0 0.000 360.0 360.0 360.0 94.6 -5.5 2.7 -15.6 2 2 A K + 0 0 92 2,-0.1 2,-1.4 68,-0.0 7,-0.0 -0.548 360.0 161.6-105.5 65.4 -6.5 2.6 -11.9 3 3 A A + 0 0 62 -2,-0.5 2,-0.3 50,-0.1 -1,-0.0 -0.576 24.9 137.7 -90.9 79.0 -8.5 -0.7 -12.1 4 4 A L - 0 0 34 -2,-1.4 2,-0.2 2,-0.0 -2,-0.1 -0.915 56.5-113.0-128.9 148.2 -8.7 -1.7 -8.4 5 5 A T > - 0 0 81 -2,-0.3 4,-2.8 1,-0.1 5,-0.2 -0.503 43.9-105.7 -71.8 148.0 -11.1 -3.0 -5.7 6 6 A A H > S+ 0 0 78 1,-0.2 4,-1.9 2,-0.2 5,-0.1 0.799 119.2 47.7 -51.0 -39.8 -12.1 -0.5 -2.9 7 7 A R H > S+ 0 0 86 2,-0.2 4,-1.8 1,-0.2 -1,-0.2 0.938 115.5 45.1 -67.0 -46.7 -9.9 -2.1 -0.1 8 8 A Q H > S+ 0 0 31 2,-0.2 4,-2.6 -3,-0.2 -2,-0.2 0.902 111.2 55.2 -54.6 -46.0 -6.8 -2.3 -2.5 9 9 A Q H X S+ 0 0 71 -4,-2.8 4,-2.1 2,-0.2 -2,-0.2 0.886 107.7 48.0 -59.0 -41.9 -7.5 1.4 -3.7 10 10 A E H X S+ 0 0 80 -4,-1.9 4,-2.2 -5,-0.2 -1,-0.2 0.887 110.1 52.1 -63.7 -40.0 -7.4 2.7 -0.0 11 11 A V H X S+ 0 0 0 -4,-1.8 4,-1.1 2,-0.2 -2,-0.2 0.921 110.1 49.9 -59.9 -44.4 -4.1 0.7 0.6 12 12 A F H X S+ 0 0 4 -4,-2.6 4,-1.2 2,-0.2 3,-0.4 0.914 109.8 50.6 -54.2 -47.9 -2.7 2.5 -2.7 13 13 A D H X S+ 0 0 55 -4,-2.1 4,-3.0 1,-0.2 -2,-0.2 0.877 102.4 60.2 -60.3 -39.3 -3.9 6.0 -1.2 14 14 A L H X S+ 0 0 16 -4,-2.2 4,-2.0 2,-0.2 5,-0.2 0.800 99.5 57.5 -57.6 -29.8 -2.1 5.2 2.2 15 15 A I H X S+ 0 0 2 -4,-1.1 4,-1.3 -3,-0.4 -1,-0.2 0.953 114.3 37.8 -58.9 -50.8 1.3 5.0 0.1 16 16 A R H X S+ 0 0 87 -4,-1.2 4,-2.6 2,-0.2 -2,-0.2 0.909 117.2 51.0 -65.0 -46.1 0.5 8.7 -1.1 17 17 A D H X S+ 0 0 65 -4,-3.0 4,-2.6 2,-0.2 -3,-0.2 0.877 109.2 48.5 -64.4 -42.3 -0.9 9.9 2.3 18 18 A H H X>S+ 0 0 41 -4,-2.0 5,-2.5 2,-0.2 4,-0.6 0.881 115.2 46.9 -66.5 -36.0 2.1 8.7 4.5 19 19 A I H <5S+ 0 0 82 -4,-1.3 3,-0.3 -5,-0.2 -2,-0.2 0.949 119.8 39.2 -59.9 -53.4 4.6 10.4 1.9 20 20 A S H <5S+ 0 0 106 -4,-2.6 -2,-0.2 1,-0.2 -3,-0.2 0.825 122.2 39.0 -72.7 -37.2 2.5 13.7 1.9 21 21 A Q H <5S- 0 0 147 -4,-2.6 -1,-0.2 -5,-0.2 -3,-0.1 0.384 141.8 -1.4 -92.4 1.1 1.5 14.0 5.6 22 22 A T T <5S- 0 0 108 -4,-0.6 -3,-0.2 -3,-0.3 -2,-0.1 0.355 90.8-111.1-150.1 -57.5 4.9 12.7 7.1 23 23 A G S - 0 0 21 37,-0.1 4,-2.5 -2,-0.1 3,-0.4 -0.425 36.7-102.4 -73.7 161.8 4.7 -0.8 6.9 28 28 A R H > S+ 0 0 46 1,-0.2 4,-1.9 2,-0.2 15,-0.1 0.824 125.8 53.3 -56.9 -34.4 2.0 -3.6 7.1 29 29 A A H > S+ 0 0 45 2,-0.2 4,-1.4 3,-0.1 -1,-0.2 0.831 108.4 49.5 -65.4 -36.2 1.4 -2.6 10.8 30 30 A E H > S+ 0 0 35 -3,-0.4 4,-1.4 2,-0.2 -2,-0.2 0.904 110.0 50.7 -68.7 -40.8 0.8 1.1 9.7 31 31 A I H X S+ 0 0 3 -4,-2.5 4,-1.6 1,-0.2 5,-0.3 0.916 110.4 51.7 -54.1 -47.2 -1.7 -0.1 7.0 32 32 A A H X>S+ 0 0 16 -4,-1.9 4,-1.1 -5,-0.2 5,-1.0 0.815 105.0 55.9 -58.6 -35.7 -3.5 -2.2 9.8 33 33 A Q H <5S+ 0 0 157 -4,-1.4 -1,-0.2 3,-0.2 -2,-0.2 0.877 114.9 34.4 -67.7 -42.9 -3.8 0.9 12.2 34 34 A R H <5S+ 0 0 131 -4,-1.4 -2,-0.2 1,-0.1 -3,-0.1 0.959 128.0 33.4 -77.6 -55.3 -5.8 3.2 9.7 35 35 A L H <5S- 0 0 20 -4,-1.6 -3,-0.2 -5,-0.2 -2,-0.1 0.671 108.3-114.1 -74.0 -20.7 -8.0 0.7 7.8 36 36 A G T <5 + 0 0 57 -4,-1.1 2,-0.5 -5,-0.3 -3,-0.2 0.950 45.2 171.8 81.2 59.0 -8.6 -1.9 10.7 37 37 A F < - 0 0 24 -5,-1.0 -1,-0.2 -8,-0.1 6,-0.1 -0.872 34.2-135.2 -95.8 126.9 -6.8 -5.2 9.7 38 38 A R S S- 0 0 200 -2,-0.5 -1,-0.1 1,-0.1 3,-0.0 0.707 82.9 -5.5 -54.1 -28.2 -6.8 -7.8 12.6 39 39 A S S >> S- 0 0 43 -11,-0.1 3,-1.8 1,-0.0 4,-1.2 -0.967 78.0 -97.8-156.0 158.1 -3.0 -8.7 12.0 40 40 A P H 3> S+ 0 0 63 0, 0.0 4,-2.4 0, 0.0 -2,-0.1 0.779 115.7 70.9 -46.4 -31.5 -0.1 -7.8 9.4 41 41 A N H 3> S+ 0 0 77 2,-0.2 4,-0.5 1,-0.2 -3,-0.0 0.783 101.7 43.0 -54.3 -34.4 -0.9 -11.1 7.5 42 42 A A H <> S+ 0 0 30 -3,-1.8 4,-0.7 2,-0.1 3,-0.4 0.872 112.4 52.9 -77.4 -40.8 -4.3 -9.6 6.2 43 43 A A H X S+ 0 0 0 -4,-1.2 4,-1.3 1,-0.2 3,-0.3 0.859 104.3 56.9 -60.6 -38.4 -2.6 -6.1 5.4 44 44 A E H X S+ 0 0 77 -4,-2.4 4,-2.7 1,-0.2 5,-0.3 0.816 94.1 68.1 -58.9 -34.8 0.1 -7.8 3.2 45 45 A E H X S+ 0 0 113 -4,-0.5 4,-1.6 -3,-0.4 -1,-0.2 0.882 105.5 39.0 -58.4 -43.6 -2.5 -9.6 0.9 46 46 A H H X S+ 0 0 52 -4,-0.7 4,-2.4 -3,-0.3 -1,-0.2 0.899 114.2 56.4 -70.3 -42.0 -3.7 -6.2 -0.7 47 47 A L H X S+ 0 0 15 -4,-1.3 4,-1.4 2,-0.2 -2,-0.2 0.918 112.3 41.0 -51.2 -50.7 -0.0 -4.8 -0.8 48 48 A K H X S+ 0 0 97 -4,-2.7 4,-2.4 2,-0.2 -2,-0.2 0.869 113.0 54.2 -67.7 -37.7 1.2 -7.9 -2.9 49 49 A A H X S+ 0 0 35 -4,-1.6 4,-2.0 -5,-0.3 -2,-0.2 0.869 105.7 53.3 -62.8 -38.2 -2.0 -7.9 -5.1 50 50 A L H X>S+ 0 0 0 -4,-2.4 5,-2.1 2,-0.2 4,-0.6 0.897 111.4 46.4 -57.1 -44.2 -1.4 -4.1 -6.0 51 51 A A H ><5S+ 0 0 40 -4,-1.4 3,-0.8 4,-0.2 -2,-0.2 0.906 109.7 53.0 -64.3 -42.9 2.3 -5.2 -7.1 52 52 A R H 3<5S+ 0 0 236 -4,-2.4 -2,-0.2 1,-0.2 -1,-0.2 0.875 108.6 51.1 -58.6 -40.0 0.9 -8.2 -9.2 53 53 A K H 3<5S- 0 0 81 -4,-2.0 -1,-0.2 -5,-0.1 -2,-0.2 0.665 120.3-114.1 -61.7 -22.3 -1.5 -5.7 -11.0 54 54 A G T <<5S+ 0 0 43 -3,-0.8 -3,-0.2 -4,-0.6 -2,-0.1 0.628 84.8 109.8 94.7 17.7 1.6 -3.4 -11.7 55 55 A V S