==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=12-OCT-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HYDROLASE 20-JUN-11 2LEP . COMPND 2 MOLECULE: RHOMBOID PROTEASE GLPG 1; . SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; . AUTHOR A.R.SHERRATT,H.GHASRIANI,N.K.GOTO . 63 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3950.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 51 81.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 12 19.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 9 14.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 7.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 22 34.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 123 0, 0.0 2,-0.4 0, 0.0 39,-0.2 0.000 360.0 360.0 360.0 139.9 1.1 1.1 -2.5 2 2 A L E -A 39 0A 50 37,-2.1 37,-3.1 43,-0.0 2,-0.4 -0.979 360.0-137.6-133.2 146.9 2.4 -1.9 -4.3 3 3 A M E +A 38 0A 68 -2,-0.4 35,-0.3 35,-0.3 3,-0.1 -0.812 27.5 163.6 -99.3 136.0 5.8 -3.4 -5.2 4 4 A I E - 0 0 12 33,-2.3 2,-0.3 1,-0.4 34,-0.2 0.752 52.6 -44.1-115.9 -60.3 6.2 -4.8 -8.7 5 5 A T E -A 37 0A 35 32,-2.5 32,-5.0 30,-0.1 -1,-0.4 -0.826 48.1-107.8-155.6-165.1 9.8 -5.3 -9.7 6 6 A S E -A 36 0A 48 30,-0.3 2,-0.5 -2,-0.3 30,-0.3 -0.995 21.1-145.0-146.0 135.0 13.2 -3.7 -9.7 7 7 A F E -A 35 0A 12 28,-3.4 28,-2.4 -2,-0.4 6,-0.1 -0.873 15.9-138.3-107.4 134.7 15.2 -2.3 -12.6 8 8 A A S S+ 0 0 80 -2,-0.5 -1,-0.1 26,-0.2 28,-0.1 0.865 98.6 38.1 -52.0 -36.2 18.9 -2.4 -13.0 9 9 A N S > S- 0 0 82 1,-0.1 4,-1.4 26,-0.1 -1,-0.1 -0.906 71.7-144.9-118.9 147.7 18.6 1.2 -14.1 10 10 A P H > S+ 0 0 55 0, 0.0 4,-5.3 0, 0.0 5,-0.4 0.910 107.7 50.9 -74.3 -41.7 16.4 3.9 -12.8 11 11 A R H > S+ 0 0 180 1,-0.3 4,-4.6 2,-0.3 5,-0.4 0.980 109.8 51.3 -57.0 -49.9 16.0 5.4 -16.3 12 12 A V H > S+ 0 0 62 1,-0.2 4,-1.8 2,-0.2 -1,-0.3 0.883 117.7 41.0 -47.2 -43.3 15.1 1.9 -17.3 13 13 A A H X>S+ 0 0 0 -4,-1.4 4,-3.1 2,-0.2 5,-0.5 0.983 114.8 45.8 -71.3 -63.6 12.7 2.2 -14.4 14 14 A Q H X5S+ 0 0 100 -4,-5.3 4,-3.4 1,-0.3 5,-0.3 0.898 114.7 52.2 -48.8 -42.7 11.4 5.7 -14.9 15 15 A A H X5S+ 0 0 57 -4,-4.6 4,-3.4 -5,-0.4 -1,-0.3 0.938 113.9 42.7 -59.3 -48.1 11.1 4.8 -18.6 16 16 A F H X5S+ 0 0 2 -4,-1.8 4,-5.5 -5,-0.4 5,-0.3 0.988 119.5 40.3 -62.2 -61.9 9.1 1.7 -17.7 17 17 A V H X5S+ 0 0 13 -4,-3.1 4,-5.2 2,-0.3 10,-0.4 0.909 118.0 49.9 -55.2 -40.4 6.9 3.2 -15.0 18 18 A D H XS+ 0 0 0 -4,-5.5 5,-4.3 1,-0.3 -2,-0.2 0.936 114.5 51.1 -50.7 -47.7 3.4 1.9 -17.7 21 21 A A H ><5S+ 0 0 40 -4,-5.2 3,-1.5 -5,-0.3 -1,-0.3 0.862 105.6 55.0 -58.6 -33.8 2.2 5.3 -16.5 22 22 A T H 3<5S+ 0 0 99 -4,-2.4 -1,-0.3 1,-0.3 -2,-0.3 0.906 105.0 51.9 -65.1 -37.5 1.8 6.1 -20.2 23 23 A Q T 3<5S- 0 0 59 -4,-2.5 -1,-0.3 2,-0.3 -2,-0.2 0.416 131.1-105.6 -74.5 1.5 -0.4 2.9 -20.2 24 24 A G T < 5S+ 0 0 39 -3,-1.5 2,-0.8 -5,-0.3 -3,-0.3 0.568 87.7 129.0 80.9 10.2 -2.1 4.7 -17.3 25 25 A V < - 0 0 0 -5,-4.3 2,-0.7 -6,-0.3 -1,-0.3 -0.871 52.8-146.8-101.7 103.5 -0.3 2.3 -15.1 26 26 A I + 0 0 75 -2,-0.8 14,-4.7 -5,-0.2 15,-1.4 -0.651 30.0 157.0 -80.7 115.6 1.4 4.2 -12.4 27 27 A L E -B 39 0A 5 -2,-0.7 2,-0.3 -10,-0.4 12,-0.2 -0.358 16.0-168.1-113.3-163.7 4.7 2.8 -11.2 28 28 A T E -B 38 0A 64 10,-0.9 10,-2.6 -2,-0.2 2,-0.5 -0.922 26.3-100.7 179.1 159.2 7.6 4.5 -9.5 29 29 A I E -B 37 0A 42 -2,-0.3 2,-0.5 8,-0.2 8,-0.3 -0.839 28.0-150.1 -99.3 127.6 11.2 3.9 -8.5 30 30 A Q E -B 36 0A 78 6,-4.5 6,-1.1 -2,-0.5 2,-0.6 -0.837 28.5-110.8 -98.0 125.0 11.9 3.0 -4.9 31 31 A Q + 0 0 183 -2,-0.5 2,-0.3 4,-0.1 4,-0.1 -0.371 69.9 120.8 -57.4 106.4 15.3 4.1 -3.7 32 32 A H S S- 0 0 124 -2,-0.6 -3,-0.0 2,-0.2 -26,-0.0 -0.893 83.5 -75.8-153.3-179.4 17.2 0.8 -3.2 33 33 A N S S+ 0 0 148 -2,-0.3 2,-0.3 2,-0.1 -2,-0.1 0.873 125.1 31.3 -53.1 -34.8 20.3 -1.0 -4.4 34 34 A Q S S- 0 0 94 -4,-0.1 2,-3.0 -25,-0.0 -2,-0.2 -0.879 107.3 -91.2-122.1 154.7 18.3 -1.5 -7.5 35 35 A S E -A 7 0A 14 -28,-2.4 -28,-3.4 -2,-0.3 -4,-0.1 -0.346 49.6-158.2 -64.7 74.6 15.6 0.6 -9.1 36 36 A D E -AB 6 30A 22 -2,-3.0 -6,-4.5 -6,-1.1 2,-0.7 -0.355 5.8-146.9 -57.2 129.3 12.8 -1.1 -7.2 37 37 A V E -AB 5 29A 0 -32,-5.0 -32,-2.5 -8,-0.3 -33,-2.3 -0.906 15.4-168.7-110.0 113.1 9.7 -0.4 -9.2 38 38 A W E -AB 3 28A 72 -10,-2.6 -10,-0.9 -2,-0.7 2,-0.4 -0.662 15.6-130.6 -97.6 155.8 6.5 -0.1 -7.3 39 39 A L E +AB 2 27A 0 -37,-3.1 -37,-2.1 -2,-0.3 -12,-0.3 -0.881 21.7 176.7-107.9 137.0 3.0 0.0 -8.7 40 40 A A S S+ 0 0 46 -14,-4.7 2,-3.1 -2,-0.4 3,-0.2 0.792 78.4 67.8-101.1 -42.1 0.6 2.7 -7.7 41 41 A D > + 0 0 33 -15,-1.4 3,-6.5 1,-0.2 4,-0.4 -0.340 67.1 177.4 -73.5 58.2 -2.2 1.6 -9.9 42 42 A E G > S+ 0 0 79 -2,-3.1 3,-2.8 1,-0.3 4,-0.5 0.798 76.1 71.0 -36.8 -33.3 -2.6 -1.6 -7.8 43 43 A S G 3 S+ 0 0 84 1,-0.3 -1,-0.3 -3,-0.2 4,-0.3 0.790 103.1 44.3 -52.1 -25.8 -5.5 -2.4 -10.1 44 44 A Q G <> S+ 0 0 40 -3,-6.5 4,-4.0 2,-0.1 5,-0.4 0.429 83.3 105.0 -97.2 -6.3 -2.6 -2.9 -12.4 45 45 A A H <> S+ 0 0 13 -3,-2.8 4,-4.1 -4,-0.4 5,-0.5 0.921 88.7 38.7 -38.4 -68.6 -0.4 -4.8 -9.9 46 46 A E H > S+ 0 0 143 -4,-0.5 4,-1.7 2,-0.2 -1,-0.3 0.883 121.6 49.0 -48.6 -43.9 -1.1 -8.1 -11.6 47 47 A R H >> S+ 0 0 70 -4,-0.3 4,-5.4 2,-0.2 3,-0.8 0.998 116.3 37.9 -59.5 -71.7 -0.8 -6.2 -14.8 48 48 A V H 3X S+ 0 0 0 -4,-4.0 4,-3.0 1,-0.3 -2,-0.2 0.935 116.7 51.6 -44.9 -60.0 2.4 -4.5 -14.1 49 49 A R H 3X S+ 0 0 175 -4,-4.1 4,-0.6 -5,-0.4 -1,-0.3 0.854 119.6 39.4 -47.1 -35.0 3.7 -7.5 -12.4 50 50 A A H X S+ 0 0 6 -4,-5.4 4,-5.8 1,-0.2 3,-0.7 0.869 93.3 68.5 -43.2 -49.9 3.7 -6.5 -17.9 52 52 A L H 3X S+ 0 0 10 -4,-3.0 4,-2.9 1,-0.3 3,-0.4 0.893 100.8 42.7 -36.7 -79.7 7.3 -6.8 -16.7 53 53 A A H 3X S+ 0 0 59 -4,-0.6 4,-1.8 1,-0.3 -1,-0.3 0.800 124.3 40.5 -38.8 -35.3 8.0 -10.2 -18.2 54 54 A R H