==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-JAN-2010 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIBACTERIAL PEPTIDE 20-MAY-97 3LEU . COMPND 2 MOLECULE: LEUCOCIN A; . SOURCE 2 ORGANISM_SCIENTIFIC: LEUCONOSTOC GELIDUM; . AUTHOR N.L.F.GALLAGHER,M.SAILER,W.P.NIEMCZURA,T.T.NAKASHIMA, . 37 1 1 1 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3744.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 12 32.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 24.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 198 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 160.3 12.6 -9.3 5.1 2 2 A Y + 0 0 146 1,-0.1 3,-0.2 5,-0.0 16,-0.1 -0.123 360.0 106.6-129.9 36.9 10.6 -6.3 4.0 3 3 A Y S S- 0 0 178 1,-0.4 2,-0.1 2,-0.1 -1,-0.1 -0.010 102.1 -26.3 -99.1 28.7 8.8 -5.4 7.2 4 4 A G S S+ 0 0 37 1,-0.4 -1,-0.4 11,-0.1 12,-0.0 -0.138 118.1 39.6 126.5 132.2 11.0 -2.4 7.7 5 5 A N S S+ 0 0 157 -3,-0.2 -1,-0.4 -2,-0.1 -2,-0.1 0.556 105.4 45.1 68.0 133.1 14.5 -1.5 6.5 6 6 A G S S+ 0 0 58 -3,-0.1 -1,-0.1 -4,-0.1 -4,-0.0 0.406 72.5 139.7 82.1 -4.0 15.4 -2.6 3.0 7 7 A V - 0 0 26 1,-0.1 3,-0.1 2,-0.0 -5,-0.0 0.761 52.6-143.5 -43.5 -35.2 12.0 -1.2 1.9 8 8 A H - 0 0 153 1,-0.1 2,-0.1 2,-0.0 -1,-0.1 0.994 17.9-122.3 59.0 77.7 13.5 0.2 -1.2 9 9 A a - 0 0 68 1,-0.2 5,-0.2 2,-0.1 -1,-0.1 -0.286 22.2-160.5 -50.7 117.5 11.4 3.4 -1.5 10 10 A T - 0 0 87 3,-1.3 -1,-0.2 -2,-0.1 4,-0.1 -0.148 49.0 -95.8-100.6 39.5 9.8 3.2 -4.9 11 11 A K S S+ 0 0 205 1,-0.1 3,-0.1 2,-0.0 -2,-0.1 0.874 119.3 63.0 53.5 40.6 9.0 6.9 -5.2 12 12 A S S S- 0 0 94 1,-0.3 -1,-0.1 0, 0.0 2,-0.1 0.092 114.2 -11.5 174.6 43.0 5.6 6.3 -3.8 13 13 A G - 0 0 44 3,-0.0 -3,-1.3 2,-0.0 -1,-0.3 0.064 50.3-157.0 118.3 129.3 5.8 4.9 -0.3 14 14 A a S S+ 0 0 69 -5,-0.2 -4,-0.1 -4,-0.1 -10,-0.1 0.836 84.7 47.4 -93.0 -83.9 8.6 3.6 1.8 15 15 A S S S- 0 0 85 1,-0.1 -11,-0.1 -12,-0.1 -2,-0.0 0.730 80.2-170.6 -34.0 -43.2 7.6 1.3 4.6 16 16 A V - 0 0 47 1,-0.1 2,-0.3 -13,-0.1 -12,-0.1 0.929 2.9-164.0 47.8 70.4 5.4 -0.6 2.2 17 17 A N - 0 0 84 1,-0.1 4,-0.4 -14,-0.1 -1,-0.1 -0.664 13.1-146.3 -79.5 140.5 3.4 -2.9 4.4 18 18 A W S > S+ 0 0 148 -2,-0.3 4,-0.5 2,-0.2 -1,-0.1 0.852 99.6 41.1 -80.9 -35.6 1.8 -5.7 2.4 19 19 A G H > S+ 0 0 50 2,-0.2 4,-1.2 1,-0.2 3,-0.5 0.870 117.8 48.4 -75.0 -38.9 -1.3 -6.0 4.5 20 20 A E H > S+ 0 0 123 1,-0.2 4,-1.1 2,-0.2 -2,-0.2 0.612 104.0 62.4 -74.1 -13.3 -1.5 -2.2 4.8 21 21 A A H > S+ 0 0 45 -4,-0.4 4,-1.0 2,-0.2 -1,-0.2 0.694 103.6 47.6 -82.8 -22.3 -1.0 -2.1 1.0 22 22 A F H X S+ 0 0 160 -4,-0.5 4,-1.9 -3,-0.5 -2,-0.2 0.743 115.4 45.1 -82.6 -28.8 -4.3 -4.0 0.6 23 23 A S H X S+ 0 0 58 -4,-1.2 4,-1.9 2,-0.2 -2,-0.2 0.733 117.9 44.3 -79.1 -27.5 -5.8 -1.5 3.1 24 24 A A H X S+ 0 0 37 -4,-1.1 4,-1.1 2,-0.2 -2,-0.2 0.719 115.1 47.5 -84.9 -26.3 -4.0 1.2 1.1 25 25 A G H X S+ 0 0 23 -4,-1.0 4,-1.6 2,-0.2 -2,-0.2 0.874 112.3 52.3 -75.3 -41.5 -5.1 -0.4 -2.1 26 26 A V H >X S+ 0 0 78 -4,-1.9 4,-1.6 1,-0.2 3,-0.7 0.984 115.3 38.1 -48.5 -64.1 -8.6 -0.6 -0.6 27 27 A H H 3< S+ 0 0 97 -4,-1.9 -1,-0.2 1,-0.3 -2,-0.2 0.772 105.6 69.0 -67.9 -26.8 -8.6 3.1 0.3 28 28 A R H >< S+ 0 0 175 -4,-1.1 3,-0.7 1,-0.2 -1,-0.3 0.914 106.6 40.2 -56.0 -42.2 -6.9 3.9 -2.9 29 29 A L H << S+ 0 0 112 -4,-1.6 3,-0.3 -3,-0.7 -2,-0.2 0.862 115.7 52.2 -70.5 -37.4 -10.1 2.9 -4.6 30 30 A A T 3< S+ 0 0 60 -4,-1.6 -1,-0.2 1,-0.2 -2,-0.2 0.081 77.5 101.4 -92.9 23.9 -12.2 4.6 -1.9 31 31 A N S < S+ 0 0 125 -3,-0.7 -1,-0.2 -5,-0.1 -3,-0.1 0.073 76.8 58.7 -92.8 24.9 -10.4 7.9 -2.2 32 32 A G S S- 0 0 69 -3,-0.3 -2,-0.1 1,-0.0 -1,-0.1 0.724 93.9-131.8-111.4 -58.0 -13.3 9.3 -4.2 33 33 A G S S+ 0 0 55 0, 0.0 3,-0.1 0, 0.0 -3,-0.0 -0.398 89.0 16.3 137.3 -58.2 -16.4 9.1 -2.1 34 34 A N S S+ 0 0 150 1,-0.1 -4,-0.1 2,-0.1 -3,-0.0 -0.022 97.9 93.8-137.1 30.9 -19.1 7.5 -4.3 35 35 A G + 0 0 68 -6,-0.2 -4,-0.1 2,-0.1 -1,-0.1 -0.330 67.8 74.8-119.7 50.0 -17.1 6.1 -7.2 36 36 A F 0 0 114 -3,-0.1 -1,-0.1 -6,-0.1 -2,-0.1 0.638 360.0 360.0-121.2 -49.0 -16.7 2.5 -6.0 37 37 A W 0 0 261 0, 0.0 -2,-0.1 0, 0.0 -3,-0.0 0.946 360.0 360.0 -65.2 360.0 -20.0 0.8 -6.4