==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER TOXIN 16-APR-02 1LGL . COMPND 2 MOLECULE: BEKM-1 TOXIN; . SOURCE 2 ORGANISM_SCIENTIFIC: MESOBUTHUS EUPEUS; . AUTHOR Y.V.KOROLOKOVA,E.V.BOCHAROV,K.ANGELO,I.V.MASLENNIKOV, . 36 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2766.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 23 63.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 9 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 8.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 6 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A R 0 0 184 0, 0.0 34,-2.5 0, 0.0 2,-0.2 0.000 360.0 360.0 360.0 159.1 -7.1 4.6 -3.3 2 2 A P E -A 34 0A 96 0, 0.0 32,-0.2 0, 0.0 2,-0.2 -0.500 360.0-174.8 -75.0 152.5 -6.3 1.3 -4.9 3 3 A T E - 0 0 45 30,-2.2 29,-0.0 2,-0.2 0, 0.0 -0.458 38.7-108.5-127.1-161.3 -3.3 1.1 -7.2 4 4 A D E S+ 0 0 136 -2,-0.2 2,-0.7 28,-0.1 30,-0.1 0.168 72.4 126.5-118.4 11.2 -1.6 -1.4 -9.5 5 5 A I E - 0 0 60 28,-0.2 28,-2.5 1,-0.1 -2,-0.2 -0.630 60.2-133.0 -74.7 112.5 1.4 -1.8 -7.1 6 6 A K E +A 32 0A 177 -2,-0.7 2,-0.3 26,-0.2 26,-0.2 -0.355 33.6 167.0 -73.2 145.4 1.6 -5.5 -6.6 7 7 A a - 0 0 12 24,-1.9 3,-0.1 1,-0.1 -1,-0.0 -0.982 36.2-157.9-153.1 154.2 2.0 -6.9 -3.1 8 8 A S S S+ 0 0 74 -2,-0.3 2,-0.3 1,-0.2 -1,-0.1 0.626 85.9 21.1-100.5 -23.7 1.7 -10.3 -1.3 9 9 A E S > S- 0 0 93 22,-0.1 3,-0.7 1,-0.1 4,-0.4 -0.935 73.6-118.3-149.5 163.7 1.1 -8.7 2.1 10 10 A S G >> S+ 0 0 54 -2,-0.3 4,-1.8 1,-0.3 3,-1.2 0.815 107.3 61.9 -80.1 -33.1 -0.1 -5.5 3.7 11 11 A Y G 34 S+ 0 0 158 1,-0.3 -1,-0.3 2,-0.2 5,-0.1 0.581 97.8 61.8 -72.1 -9.7 3.1 -4.6 5.5 12 12 A Q G <4 S+ 0 0 62 -3,-0.7 4,-0.5 2,-0.1 -1,-0.3 0.758 108.6 41.5 -78.0 -28.8 4.8 -4.4 2.1 13 13 A b T <> S+ 0 0 0 -3,-1.2 4,-2.8 -4,-0.4 3,-0.3 0.860 99.3 71.6 -85.5 -39.0 2.5 -1.6 1.1 14 14 A F H X S+ 0 0 90 -4,-1.8 4,-2.1 12,-0.3 -1,-0.1 0.835 104.3 37.8 -56.0 -46.2 2.4 0.4 4.3 15 15 A P H > S+ 0 0 60 0, 0.0 4,-2.1 0, 0.0 -1,-0.3 0.791 115.4 54.9 -75.0 -29.7 5.9 1.8 4.0 16 16 A V H > S+ 0 0 63 -4,-0.5 4,-2.7 -3,-0.3 5,-0.3 0.857 111.5 44.7 -68.7 -36.6 5.7 2.2 0.3 17 17 A c H X>S+ 0 0 0 -4,-2.8 5,-2.0 2,-0.2 4,-1.5 0.889 113.7 49.1 -75.0 -41.2 2.5 4.3 0.7 18 18 A K H <5S+ 0 0 134 -4,-2.1 -2,-0.2 -5,-0.3 -1,-0.2 0.858 117.7 42.6 -65.5 -36.3 4.1 6.3 3.5 19 19 A S H <5S+ 0 0 99 -4,-2.1 -2,-0.2 -5,-0.1 -1,-0.2 0.948 125.4 29.8 -72.1 -51.5 7.1 6.9 1.4 20 20 A R H <5S+ 0 0 179 -4,-2.7 -3,-0.2 -5,-0.1 -2,-0.2 0.970 136.5 15.9 -79.9 -57.9 5.5 7.6 -1.9 21 21 A F T <5S- 0 0 104 -4,-1.5 -3,-0.2 -5,-0.3 -1,-0.1 0.662 93.4-122.3 -97.9 -20.9 2.1 9.2 -1.3 22 22 A G < + 0 0 55 -5,-2.0 -4,-0.3 1,-0.2 -3,-0.1 0.754 56.3 157.6 80.6 27.3 2.6 10.2 2.4 23 23 A K - 0 0 71 -6,-1.4 -1,-0.2 -9,-0.1 3,-0.1 -0.256 49.4-122.9 -80.4 172.5 -0.4 8.1 3.4 24 24 A T S S- 0 0 105 12,-0.6 2,-0.3 1,-0.3 -6,-0.1 0.792 82.0 -11.0 -89.7 -31.9 -1.0 6.9 6.9 25 25 A N - 0 0 68 11,-2.4 11,-2.7 -8,-0.1 2,-0.3 -0.977 57.6-148.2-163.5 160.4 -1.3 3.2 6.2 26 26 A G E -B 35 0A 3 -2,-0.3 2,-0.3 9,-0.2 -12,-0.3 -0.956 6.9-167.3-139.3 158.2 -1.7 0.7 3.4 27 27 A R E -B 34 0A 112 7,-2.1 7,-2.0 -2,-0.3 2,-0.9 -0.996 28.6-113.2-151.8 142.7 -3.3 -2.7 2.9 28 28 A a E -B 33 0A 30 -2,-0.3 2,-0.7 5,-0.2 5,-0.2 -0.662 32.0-173.2 -88.0 104.4 -3.1 -5.4 0.2 29 29 A V E > S-B 32 0A 60 3,-2.7 3,-1.4 -2,-0.9 -22,-0.1 -0.880 73.1 -24.0 -99.7 112.6 -6.4 -5.6 -1.6 30 30 A N T 3 S- 0 0 149 -2,-0.7 -1,-0.2 1,-0.3 3,-0.1 0.835 127.6 -49.8 58.1 35.1 -6.6 -8.5 -4.0 31 31 A G T 3 S+ 0 0 27 1,-0.2 -24,-1.9 -3,-0.2 2,-0.3 0.593 123.6 97.2 83.8 12.1 -2.9 -8.6 -4.3 32 32 A F E < S-AB 6 29A 95 -3,-1.4 -3,-2.7 -26,-0.2 -1,-0.2 -0.992 79.2-101.7-137.4 145.6 -2.6 -4.8 -5.0 33 33 A b E - B 0 28A 3 -28,-2.5 -30,-2.2 -2,-0.3 2,-0.4 -0.316 26.9-167.7 -71.3 139.4 -1.9 -2.0 -2.6 34 34 A D E -AB 2 27A 23 -7,-2.0 -7,-2.1 -32,-0.2 2,-0.4 -0.979 11.8-159.5-125.0 119.3 -4.6 0.2 -1.3 35 35 A c E B 0 26A 3 -34,-2.5 -9,-0.2 -2,-0.4 -21,-0.0 -0.766 360.0 360.0-105.0 140.7 -3.4 3.3 0.5 36 36 A F 0 0 82 -11,-2.7 -11,-2.4 -2,-0.4 -12,-0.6 -0.971 360.0 360.0-159.0 360.0 -5.4 5.3 3.0