==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-APR-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 21-JUL-11 2LG5 . COMPND 2 MOLECULE: GALLINACIN-2; . SOURCE 2 SYNTHETIC: YES; . AUTHOR H.MEUDAL,C.LANDON . 36 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2717.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 18 50.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 8 22.2 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 7 19.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 130 0, 0.0 5,-0.1 0, 0.0 6,-0.1 0.000 360.0 360.0 360.0 110.8 2.8 2.8 -6.4 2 2 A F + 0 0 179 4,-0.2 5,-0.2 2,-0.0 29,-0.0 0.893 360.0 34.6 -90.0 -84.4 -0.8 3.4 -7.4 3 3 A a S S- 0 0 22 3,-2.6 2,-2.8 1,-0.2 20,-0.1 0.223 117.0 -60.6 -59.3-170.1 -2.9 5.0 -4.7 4 4 A K S S+ 0 0 175 1,-0.2 18,-0.3 18,-0.2 -1,-0.2 -0.233 138.1 10.0 -73.8 52.3 -1.6 7.5 -2.2 5 5 A G S S- 0 0 5 -2,-2.8 2,-0.3 1,-0.2 -1,-0.2 0.023 123.7 -72.7 169.0 -41.3 0.8 5.0 -1.0 6 6 A G S S+ 0 0 2 -5,-0.1 -3,-2.6 25,-0.1 2,-0.6 -0.816 92.5 1.2 166.5-120.7 0.8 2.0 -3.3 7 7 A S E S-A 30 0A 41 23,-2.8 23,-3.0 -2,-0.3 14,-0.1 -0.900 76.0-114.7-104.1 120.8 -1.7 -0.8 -3.9 8 8 A b E -A 29 0A 5 -2,-0.6 2,-2.9 21,-0.3 20,-0.3 -0.273 33.6-107.1 -54.6 133.5 -4.8 -0.5 -1.7 9 9 A H - 0 0 65 19,-0.9 2,-2.8 18,-0.3 19,-0.3 -0.356 43.0-179.4 -64.4 75.3 -5.0 -3.4 0.7 10 10 A F S S- 0 0 125 -2,-2.9 -1,-0.1 2,-0.3 3,-0.1 -0.360 77.6 -61.2 -76.0 60.9 -7.8 -5.1 -1.2 11 11 A G S S+ 0 0 77 -2,-2.8 2,-0.3 1,-0.2 -1,-0.2 0.731 126.8 5.5 66.0 20.8 -7.9 -7.9 1.4 12 12 A G S S- 0 0 37 -4,-0.1 -2,-0.3 3,-0.0 -1,-0.2 -0.966 71.0-139.3 169.5-155.1 -4.3 -8.6 0.4 13 13 A c - 0 0 42 -2,-0.3 -4,-0.1 -4,-0.2 18,-0.0 -0.926 44.0 -76.0 173.9 165.1 -1.5 -7.3 -1.8 14 14 A P S S- 0 0 90 0, 0.0 2,-0.2 0, 0.0 -1,-0.1 0.856 104.3 -46.4 -43.8 -42.4 1.4 -8.3 -4.2 15 15 A S S S- 0 0 56 -3,-0.1 2,-2.1 2,-0.0 -3,-0.0 -0.828 94.6 -36.2-166.4-157.5 3.4 -9.4 -1.1 16 16 A H S S+ 0 0 177 -2,-0.2 2,-0.1 14,-0.0 15,-0.1 -0.235 75.7 167.1 -78.2 50.7 4.3 -8.2 2.4 17 17 A L - 0 0 11 -2,-2.1 15,-0.3 1,-0.1 2,-0.2 -0.397 41.0-106.1 -67.3 142.1 4.6 -4.7 1.1 18 18 A I E -B 31 0A 63 13,-1.8 13,-2.4 12,-0.2 2,-0.2 -0.485 33.6-113.4 -72.6 137.3 4.9 -2.0 3.8 19 19 A K E +B 30 0A 126 11,-0.2 11,-0.3 -2,-0.2 -1,-0.1 -0.498 43.7 160.8 -70.8 135.1 1.8 0.1 4.3 20 20 A V E - 0 0 51 9,-3.0 2,-0.3 -2,-0.2 10,-0.1 -0.061 64.8 -22.7-146.9 34.1 2.2 3.8 3.3 21 21 A G E - 0 0 18 8,-0.4 8,-0.8 -16,-0.1 2,-0.3 -0.982 63.1-116.4 155.2-160.2 -1.3 5.0 2.9 22 22 A S E -B 28 0A 35 6,-0.4 6,-0.3 -2,-0.3 -18,-0.2 -0.900 7.4-150.8-174.9 144.8 -4.8 3.8 2.2 23 23 A b - 0 0 35 4,-1.9 4,-0.1 1,-0.3 6,-0.1 0.250 68.0 -10.5 -94.3-140.6 -7.6 4.0 -0.3 24 24 A F S > S- 0 0 188 2,-0.1 3,-2.0 3,-0.1 -1,-0.3 -0.262 122.7 -23.1 -59.4 145.3 -11.3 3.8 0.3 25 25 A G T 3 S- 0 0 50 1,-0.2 0, 0.0 -3,-0.1 0, 0.0 -0.279 131.6 -24.1 54.4-125.7 -12.2 2.6 3.8 26 26 A F T 3 S+ 0 0 191 -17,-0.1 2,-2.7 1,-0.1 -1,-0.2 -0.120 86.6 138.7-110.8 35.6 -9.3 0.6 5.2 27 27 A R < - 0 0 105 -3,-2.0 -4,-1.9 -4,-0.1 -18,-0.3 -0.347 46.2-155.3 -77.2 60.1 -7.7 -0.4 1.9 28 28 A S E - B 0 22A 22 -2,-2.7 -19,-0.9 -19,-0.3 2,-0.4 -0.111 15.5-120.5 -42.2 120.5 -4.3 0.3 3.4 29 29 A a E -A 8 0A 0 -8,-0.8 -9,-3.0 -21,-0.3 -8,-0.4 -0.547 29.0-156.0 -71.2 122.2 -2.0 1.1 0.5 30 30 A c E +AB 7 19A 1 -23,-3.0 -23,-2.8 -2,-0.4 2,-0.3 -0.782 17.2 170.3-101.6 143.8 0.9 -1.3 0.4 31 31 A K E - B 0 18A 12 -13,-2.4 -13,-1.8 -2,-0.3 4,-0.1 -0.989 41.3 -84.2-151.6 152.9 4.3 -0.6 -1.2 32 32 A W > - 0 0 114 -2,-0.3 3,-0.5 -15,-0.3 -15,-0.1 -0.317 32.2-134.6 -59.5 136.1 7.8 -2.1 -1.4 33 33 A P T 3 S+ 0 0 68 0, 0.0 2,-1.8 0, 0.0 3,-0.4 0.892 102.8 64.5 -58.4 -41.9 10.0 -1.2 1.6 34 34 A W T 3 S+ 0 0 201 1,-0.2 -2,-0.1 2,-0.1 0, 0.0 -0.198 90.6 72.4 -78.1 46.1 12.9 -0.5 -0.7 35 35 A N < 0 0 77 -2,-1.8 -1,-0.2 -3,-0.5 -3,-0.1 -0.125 360.0 360.0-154.1 43.8 11.0 2.4 -2.2 36 36 A A 0 0 121 -3,-0.4 -2,-0.1 -5,-0.0 -4,-0.0 0.892 360.0 360.0 48.9 360.0 10.9 5.1 0.4