==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=22-APR-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 21-JUL-11 2LG6 . COMPND 2 MOLECULE: GALLINACIN-2; . SOURCE 2 SYNTHETIC: YES; . AUTHOR H.MEUDAL,C.LANDON . 36 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2531.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 22 61.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 13 36.1 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 11.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 16.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A L 0 0 121 0, 0.0 7,-3.5 0, 0.0 2,-0.1 0.000 360.0 360.0 360.0 120.9 5.7 3.5 6.2 2 2 A F E -A 7 0A 138 5,-0.3 2,-0.3 27,-0.1 5,-0.3 -0.331 360.0-155.3 -76.3 162.9 2.2 4.8 5.5 3 3 A a E > -A 6 0A 4 3,-2.4 3,-2.4 27,-0.2 2,-1.3 -0.998 40.2 -82.9-142.0 140.1 0.7 5.0 2.0 4 4 A K T 3 S+ 0 0 192 -2,-0.3 3,-0.1 1,-0.3 27,-0.1 -0.113 125.4 5.7 -42.8 80.3 -2.1 7.2 0.6 5 5 A G T 3 S- 0 0 29 -2,-1.3 27,-0.3 1,-0.3 -1,-0.3 -0.067 140.2 -11.1 132.5 -35.1 -4.9 4.9 2.0 6 6 A G E < S-A 3 0A 5 -3,-2.4 -3,-2.4 24,-0.4 -1,-0.3 -0.337 89.9 -54.9-154.3-122.0 -3.0 2.3 4.0 7 7 A S E -A 2 0A 47 23,-0.5 23,-1.3 -5,-0.3 2,-0.3 -0.939 40.8-108.9-141.6 162.2 0.5 1.2 4.6 8 8 A b E -B 29 0B 12 -7,-3.5 2,-0.4 -2,-0.3 21,-0.3 -0.693 28.9-174.8 -95.4 144.6 3.6 0.1 2.6 9 9 A H E > -B 28 0B 71 19,-2.9 19,-1.4 3,-0.5 3,-0.5 -0.989 29.0-117.1-142.1 128.7 4.9 -3.5 2.7 10 10 A F E 3 S+B 27 0B 131 -2,-0.4 17,-0.2 17,-0.2 16,-0.0 -0.480 99.4 22.6 -66.2 126.4 7.9 -4.9 1.0 11 11 A G T 3 S- 0 0 69 15,-0.6 -1,-0.2 -2,-0.3 2,-0.2 -0.344 125.6 -52.2 115.4 -51.7 7.0 -7.5 -1.5 12 12 A G S < S- 0 0 27 -3,-0.5 -3,-0.5 16,-0.2 16,-0.2 -0.712 73.6 -54.9-177.6-128.9 3.4 -6.5 -2.3 13 13 A c - 0 0 40 -2,-0.2 6,-0.1 4,-0.1 -5,-0.1 -0.987 48.7 -98.4-148.8 136.7 0.2 -5.8 -0.5 14 14 A P > - 0 0 40 0, 0.0 3,-1.6 0, 0.0 -5,-0.0 -0.229 44.8-110.1 -51.2 133.7 -2.0 -7.6 2.0 15 15 A S T 3 S+ 0 0 114 1,-0.3 0, 0.0 3,-0.0 0, 0.0 0.782 120.7 57.2 -36.6 -36.3 -4.8 -9.3 0.1 16 16 A H T 3 S+ 0 0 111 2,-0.0 -1,-0.3 16,-0.0 15,-0.0 0.920 102.2 64.2 -63.6 -48.3 -7.0 -6.7 1.9 17 17 A L S < S- 0 0 20 -3,-1.6 2,-0.4 15,-0.2 15,-0.2 -0.047 75.4-129.9 -74.5 177.3 -5.2 -3.7 0.5 18 18 A I E -C 31 0B 23 13,-3.4 13,-2.9 3,-0.0 2,-1.0 -0.988 28.6-105.9-131.6 136.2 -4.7 -2.4 -2.9 19 19 A K E +C 30 0B 118 -2,-0.4 11,-0.2 11,-0.2 3,-0.1 -0.507 39.8 172.5 -66.9 102.4 -1.4 -1.4 -4.5 20 20 A V E - 0 0 66 9,-1.6 2,-0.3 -2,-1.0 -1,-0.2 0.821 60.1 -64.3 -79.5 -33.5 -1.5 2.4 -4.5 21 21 A G E S-C 29 0B 30 8,-1.6 8,-3.2 -3,-0.1 -1,-0.3 -0.968 72.7 -38.3 174.2-163.4 2.0 2.7 -5.7 22 22 A S E -C 28 0B 103 -2,-0.3 6,-0.3 6,-0.3 4,-0.1 -0.594 49.6-146.6 -87.4 148.6 5.6 2.1 -4.9 23 23 A b - 0 0 13 4,-3.1 2,-0.6 2,-0.3 6,-0.1 -0.191 55.8 -39.2 -96.9-166.8 7.0 2.5 -1.3 24 24 A F S > S- 0 0 159 4,-0.1 3,-1.2 2,-0.1 -1,-0.2 -0.419 111.6 -48.3 -61.2 107.4 10.4 3.7 -0.2 25 25 A G T 3 S+ 0 0 56 -2,-0.6 -2,-0.3 1,-0.2 0, 0.0 -0.392 131.8 6.1 68.1-136.7 12.5 1.9 -2.7 26 26 A F T 3 S+ 0 0 148 -2,-0.1 -15,-0.6 -4,-0.1 -1,-0.2 0.557 110.0 103.2 -56.4 -12.6 11.9 -1.8 -3.4 27 27 A R E < -B 10 0B 73 -3,-1.2 -4,-3.1 -17,-0.2 2,-0.4 -0.337 68.7-129.1 -75.7 159.9 8.8 -1.6 -1.1 28 28 A S E -BC 9 22B 14 -19,-1.4 -19,-2.9 -6,-0.3 2,-0.5 -0.895 13.8-133.1-111.1 137.2 5.2 -1.5 -2.3 29 29 A a E -BC 8 21B 18 -8,-3.2 -8,-1.6 -2,-0.4 -9,-1.6 -0.787 25.4-167.1 -93.1 126.6 2.7 1.1 -1.1 30 30 A c E + C 0 19B 0 -23,-1.3 -23,-0.5 -2,-0.5 -24,-0.4 -0.932 10.4 175.8-120.8 140.9 -0.6 -0.3 -0.1 31 31 A A E - C 0 18B 0 -13,-2.9 -13,-3.4 -2,-0.4 -25,-0.2 -0.741 40.9 -80.0-129.5 173.5 -3.9 1.4 0.5 32 32 A W > - 0 0 127 -27,-0.3 3,-0.8 -15,-0.2 -15,-0.2 -0.597 33.1-126.3 -85.0 140.4 -7.4 0.2 1.3 33 33 A P G > S+ 0 0 51 0, 0.0 3,-2.4 0, 0.0 -1,-0.1 0.557 76.5 114.0 -58.4 -15.8 -9.7 -1.1 -1.5 34 34 A W G 3 S- 0 0 130 1,-0.3 -2,-0.0 0, 0.0 0, 0.0 0.734 108.8 -4.0 -29.8 -33.4 -12.7 1.2 -0.7 35 35 A N G < 0 0 139 -3,-0.8 -1,-0.3 0, 0.0 -3,-0.0 -0.122 360.0 360.0-157.6 40.8 -11.9 2.8 -4.0 36 36 A A < 0 0 92 -3,-2.4 -16,-0.1 -5,-0.0 -17,-0.0 -0.794 360.0 360.0-145.1 360.0 -8.9 1.0 -5.3