==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=23-OCT-2011 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER PROTEIN BINDING 26-JUL-11 2LGI . COMPND 2 MOLECULE: IMMUNOGLOBULIN G-BINDING PROTEIN G; . SOURCE 2 ORGANISM_SCIENTIFIC: STREPTOCOCCUS SP. GROUP G; . AUTHOR B.J.WYLIE,L.J.SPERLING,A.J.NIEUWKOOP,W.T.FRANKS,E.OLDFIELD, . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3592.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 37 66.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 13 23.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A M 0 0 83 0, 0.0 19,-2.8 0, 0.0 2,-0.5 0.000 360.0 360.0 360.0 143.1 0.2 28.1 25.0 2 2 A Q E -A 19 0A 93 17,-0.2 2,-0.3 19,-0.1 17,-0.2 -0.849 360.0-179.7-103.8 130.2 -0.8 26.6 21.7 3 3 A Y E -A 18 0A 8 15,-2.5 15,-1.6 -2,-0.5 2,-0.4 -0.802 12.7-147.6-118.8 160.5 1.1 23.8 19.8 4 4 A K E -Ab 17 51A 90 46,-2.1 48,-3.8 -2,-0.3 2,-0.4 -0.974 3.7-148.2-132.6 145.0 0.3 22.0 16.6 5 5 A L E -Ab 16 52A 0 11,-4.1 11,-2.2 -2,-0.4 2,-0.5 -0.949 5.9-154.5-115.3 132.4 1.0 18.4 15.4 6 6 A I E -Ab 15 53A 38 46,-3.6 48,-2.5 -2,-0.4 2,-0.6 -0.898 12.6-153.2-107.2 126.8 1.8 17.4 11.8 7 7 A L E +Ab 14 54A 5 7,-3.0 7,-1.7 -2,-0.5 48,-0.2 -0.894 27.8 163.5-108.6 122.9 1.0 13.9 10.8 8 8 A N E +Ab 13 55A 68 46,-3.0 48,-1.4 -2,-0.6 2,-0.2 -0.519 28.6 154.5-126.2 59.9 2.7 11.9 8.1 9 9 A G - 0 0 2 3,-2.1 32,-0.1 46,-0.2 30,-0.0 -0.589 51.4-132.5 -90.9 152.9 1.6 8.4 9.0 10 10 A K S S+ 0 0 159 -2,-0.2 -1,-0.1 1,-0.2 3,-0.1 0.815 114.3 18.0 -71.4 -26.9 1.3 5.6 6.6 11 11 A T S S+ 0 0 113 1,-0.2 2,-0.4 -3,-0.0 -1,-0.2 0.576 131.6 48.3-113.3 -21.7 -2.1 4.9 8.1 12 12 A L + 0 0 35 26,-0.1 -3,-2.1 2,-0.0 2,-0.3 -0.972 63.9 163.1-129.9 121.3 -2.8 8.2 9.8 13 13 A K E +A 8 0A 121 -2,-0.4 2,-0.3 -5,-0.2 -5,-0.2 -0.958 29.4 61.6-135.3 154.4 -2.3 11.6 8.2 14 14 A G E S-A 7 0A 23 -7,-1.7 -7,-3.0 -2,-0.3 2,-0.3 -0.991 73.3 -67.3 138.1-145.4 -3.4 15.2 8.9 15 15 A E E -A 6 0A 118 -2,-0.3 2,-0.3 -9,-0.2 -9,-0.2 -0.973 31.7-165.8-146.8 157.7 -2.9 17.7 11.7 16 16 A T E -A 5 0A 36 -11,-2.2 -11,-4.1 -2,-0.3 2,-0.4 -0.993 5.9-154.2-146.4 148.9 -3.8 18.1 15.3 17 17 A T E +A 4 0A 90 -2,-0.3 2,-0.3 -13,-0.2 -13,-0.2 -0.980 15.4 166.5-131.3 141.9 -3.7 21.0 17.9 18 18 A T E -A 3 0A 39 -15,-1.6 -15,-2.5 -2,-0.4 2,-0.4 -0.993 30.2-125.3-148.4 151.2 -3.5 21.1 21.7 19 19 A E E +A 2 0A 142 -2,-0.3 2,-0.3 -17,-0.2 -17,-0.2 -0.824 36.3 169.1-101.4 135.7 -2.8 23.7 24.3 20 20 A A - 0 0 12 -19,-2.8 3,-0.1 -2,-0.4 4,-0.0 -0.932 46.8-118.6-140.8 164.7 -0.1 23.1 26.9 21 21 A V S S- 0 0 112 -2,-0.3 2,-0.3 1,-0.2 -1,-0.1 0.896 95.0 -23.0 -69.3 -40.7 1.9 24.8 29.5 22 22 A D S > S- 0 0 64 -21,-0.1 4,-2.5 -3,-0.1 3,-0.4 -0.877 73.5 -86.7-154.5-175.5 5.1 24.1 27.6 23 23 A A H > S+ 0 0 24 -2,-0.3 4,-3.1 1,-0.2 5,-0.3 0.861 120.1 65.7 -70.9 -36.0 6.6 21.9 24.9 24 24 A A H > S+ 0 0 45 1,-0.2 4,-0.6 2,-0.2 -1,-0.2 0.821 112.5 36.0 -53.8 -32.3 7.7 19.4 27.6 25 25 A T H > S+ 0 0 48 -3,-0.4 4,-2.0 2,-0.2 3,-0.4 0.910 115.0 51.0 -87.3 -53.2 3.9 18.9 28.1 26 26 A A H X S+ 0 0 0 -4,-2.5 4,-2.6 1,-0.2 5,-0.3 0.846 106.2 59.4 -55.3 -34.9 2.6 19.2 24.5 27 27 A E H X S+ 0 0 63 -4,-3.1 4,-1.9 1,-0.2 -1,-0.2 0.926 108.6 42.1 -61.1 -46.8 5.2 16.7 23.4 28 28 A K H X S+ 0 0 136 -4,-0.6 4,-1.8 -3,-0.4 -1,-0.2 0.813 113.7 54.0 -70.3 -30.3 3.9 13.9 25.7 29 29 A V H X S+ 0 0 57 -4,-2.0 4,-2.1 2,-0.2 -2,-0.2 0.912 110.9 44.0 -71.4 -43.4 0.3 14.9 24.9 30 30 A F H X S+ 0 0 2 -4,-2.6 4,-3.2 2,-0.2 5,-0.2 0.891 112.5 51.9 -68.9 -39.6 0.8 14.6 21.1 31 31 A K H X S+ 0 0 78 -4,-1.9 4,-4.0 -5,-0.3 -1,-0.2 0.908 109.1 51.2 -65.5 -37.5 2.7 11.3 21.4 32 32 A Q H X S+ 0 0 128 -4,-1.8 4,-4.7 2,-0.2 5,-0.4 0.947 110.0 49.7 -61.5 -46.2 -0.1 9.9 23.5 33 33 A Y H X S+ 0 0 54 -4,-2.1 4,-1.4 2,-0.2 -2,-0.2 0.962 116.1 41.5 -57.0 -51.1 -2.5 11.0 20.9 34 34 A A H <>S+ 0 0 0 -4,-3.2 5,-4.2 2,-0.2 -1,-0.2 0.911 117.5 49.4 -61.5 -41.1 -0.4 9.3 18.2 35 35 A N H ><5S+ 0 0 125 -4,-4.0 3,-1.8 3,-0.3 -2,-0.2 0.930 111.5 46.3 -67.0 -43.5 0.1 6.4 20.6 36 36 A D H 3<5S+ 0 0 96 -4,-4.7 -1,-0.2 1,-0.3 -2,-0.2 0.749 114.2 51.7 -68.5 -20.3 -3.5 6.0 21.4 37 37 A N T 3<5S- 0 0 73 -4,-1.4 -1,-0.3 -5,-0.4 -2,-0.2 0.237 119.0-114.7 -99.2 14.7 -4.0 6.2 17.7 38 38 A G T < 5 + 0 0 57 -3,-1.8 2,-0.5 1,-0.2 -3,-0.3 0.784 61.2 154.5 62.2 28.6 -1.4 3.5 17.1 39 39 A V < + 0 0 10 -5,-4.2 2,-0.4 -8,-0.2 -1,-0.2 -0.801 16.4 176.5 -92.6 132.6 1.0 5.9 15.3 40 40 A D + 0 0 135 -2,-0.5 2,-0.2 14,-0.0 14,-0.0 -0.943 29.0 103.6-134.5 110.4 4.7 4.9 15.4 41 41 A G - 0 0 24 -2,-0.4 2,-0.4 15,-0.2 15,-0.3 -0.672 69.5 -47.1-154.3-149.8 7.3 7.0 13.5 42 42 A E E -C 55 0A 153 13,-2.8 13,-1.8 -2,-0.2 2,-0.4 -0.809 50.8-150.3-103.1 140.3 10.0 9.6 13.8 43 43 A W E +C 54 0A 81 -2,-0.4 2,-0.3 11,-0.2 11,-0.2 -0.905 18.8 168.7-118.9 144.3 9.4 12.6 15.9 44 44 A T E -C 53 0A 77 9,-1.7 9,-1.9 -2,-0.4 2,-0.4 -0.956 14.2-153.8-143.5 159.6 10.7 16.2 15.7 45 45 A Y E -C 52 0A 75 -2,-0.3 2,-0.5 7,-0.2 7,-0.2 -0.994 5.4-161.1-143.7 138.5 9.8 19.5 17.4 46 46 A D E >> -C 51 0A 62 5,-2.0 5,-1.4 -2,-0.4 4,-0.9 -0.967 2.3-172.8-117.9 118.8 10.2 23.2 16.5 47 47 A D T 45S+ 0 0 109 -2,-0.5 -1,-0.1 2,-0.2 5,-0.0 0.684 85.4 58.7 -82.4 -20.6 10.0 25.7 19.3 48 48 A A T 45S+ 0 0 83 1,-0.2 -1,-0.2 3,-0.1 -2,-0.0 0.747 121.8 25.6 -79.8 -22.9 10.0 28.7 17.1 49 49 A T T 45S- 0 0 78 2,-0.1 -2,-0.2 -3,-0.1 -1,-0.2 0.467 98.9-131.7-114.2 -9.8 6.8 27.5 15.3 50 50 A K T <5 + 0 0 75 -4,-0.9 -46,-2.1 1,-0.2 2,-0.4 0.926 60.1 140.0 57.3 44.4 5.4 25.4 18.2 51 51 A T E < -bC 4 46A 34 -5,-1.4 -5,-2.0 -48,-0.2 2,-0.3 -0.982 35.9-166.1-126.2 129.4 4.9 22.5 15.7 52 52 A F E -bC 5 45A 3 -48,-3.8 -46,-3.6 -2,-0.4 2,-0.3 -0.794 9.0-166.1-107.2 152.7 5.5 18.8 16.3 53 53 A T E -bC 6 44A 34 -9,-1.9 -9,-1.7 -2,-0.3 2,-0.4 -0.999 9.7-168.6-140.5 147.0 5.6 16.2 13.6 54 54 A V E -bC 7 43A 0 -48,-2.5 -46,-3.0 -2,-0.3 2,-0.4 -0.996 7.0-176.4-134.7 135.8 5.4 12.4 13.4 55 55 A T E bC 8 42A 50 -13,-1.8 -13,-2.8 -2,-0.4 -46,-0.2 -0.973 360.0 360.0-138.4 123.6 6.2 10.3 10.4 56 56 A E 0 0 72 -48,-1.4 -15,-0.2 -2,-0.4 -17,-0.0 -0.515 360.0 360.0 -96.4 360.0 5.9 6.5 10.0