==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-FEB-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 08-AUG-11 2LHD . COMPND 2 MOLECULE: GB98; . SOURCE 2 ORGANISM_SCIENTIFIC: ARTIFICIAL GENE; . AUTHOR Y.HE,Y.CHEN,P.ALEXANDER,P.BRYAN,J.ORBAN . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4239.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 34 60.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 5 8.9 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 19.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 86 0, 0.0 19,-1.1 0, 0.0 2,-0.4 0.000 360.0 360.0 360.0 131.9 0.6 -12.6 3.3 2 2 A T E -A 19 0A 82 17,-0.3 2,-0.5 19,-0.1 17,-0.3 -0.691 360.0-167.3 -85.1 128.2 2.1 -10.3 0.7 3 3 A Y E -A 18 0A 6 15,-2.1 15,-3.1 -2,-0.4 2,-0.2 -0.963 2.3-167.8-121.1 120.4 0.8 -6.7 0.8 4 4 A K E -Ab 17 51A 92 46,-1.7 48,-1.8 -2,-0.5 2,-0.4 -0.645 4.7-153.3-102.7 161.0 1.4 -4.2 -2.1 5 5 A L E +Ab 16 52A 3 11,-1.7 11,-1.3 -2,-0.2 2,-0.4 -0.995 14.3 175.1-139.3 133.7 0.9 -0.5 -2.1 6 6 A I E -A 15 0A 64 46,-2.1 48,-0.5 -2,-0.4 2,-0.4 -0.890 8.6-176.7-140.3 106.0 0.2 1.9 -5.0 7 7 A L E -A 14 0A 9 7,-0.6 7,-3.1 -2,-0.4 2,-0.5 -0.865 6.9-164.3-107.5 137.2 -0.5 5.6 -4.3 8 8 A N E +Ac 13 55A 62 46,-2.8 48,-0.5 -2,-0.4 33,-0.2 -0.960 48.0 97.5-123.4 115.8 -1.4 8.2 -6.9 9 9 A L + 0 0 29 3,-0.6 4,-0.1 -2,-0.5 -1,-0.1 0.277 69.7 54.0-155.8 -57.0 -1.2 11.9 -6.2 10 10 A K S S- 0 0 152 2,-0.6 -1,-0.2 -3,-0.1 46,-0.1 0.085 112.7 -64.9 -77.1-166.3 2.0 13.6 -7.4 11 11 A Q S S+ 0 0 195 -3,-0.1 2,-0.3 2,-0.0 -1,-0.1 0.808 125.4 22.2 -52.5 -30.4 3.5 13.5 -10.9 12 12 A A S S- 0 0 46 -5,-0.0 -3,-0.6 0, 0.0 -2,-0.6 -0.897 86.9-106.8-135.6 164.2 3.9 9.7 -10.4 13 13 A K E -A 8 0A 124 -2,-0.3 -5,-0.3 -5,-0.2 2,-0.2 -0.459 32.8-115.9 -88.7 163.5 2.4 7.0 -8.2 14 14 A E E -A 7 0A 52 -7,-3.1 -7,-0.6 40,-0.2 2,-0.3 -0.617 24.6-163.7 -98.3 159.4 4.1 5.3 -5.3 15 15 A E E +A 6 0A 132 -2,-0.2 2,-0.3 -9,-0.2 -9,-0.2 -0.999 14.5 158.3-145.6 139.8 5.0 1.6 -5.0 16 16 A A E -A 5 0A 37 -11,-1.3 -11,-1.7 -2,-0.3 2,-0.5 -0.972 25.0-145.1-161.0 145.0 6.0 -0.6 -2.1 17 17 A I E +A 4 0A 121 -2,-0.3 2,-0.4 -13,-0.2 -13,-0.2 -0.961 24.5 162.3-119.5 121.6 6.1 -4.3 -1.2 18 18 A K E -A 3 0A 97 -15,-3.1 -15,-2.1 -2,-0.5 2,-0.7 -0.924 15.1-170.7-142.4 113.9 5.4 -5.6 2.3 19 19 A E E +A 2 0A 120 -2,-0.4 -17,-0.3 -17,-0.3 2,-0.1 -0.885 17.5 175.8-108.2 105.4 4.5 -9.2 3.2 20 20 A L - 0 0 52 -19,-1.1 -2,-0.0 -2,-0.7 0, 0.0 -0.318 46.1 -98.4 -97.3-177.6 3.4 -9.5 6.8 21 21 A V S S- 0 0 123 -2,-0.1 2,-0.1 -19,-0.0 -19,-0.1 0.827 102.9 -3.1 -71.5 -32.9 2.1 -12.5 8.8 22 22 A D S S- 0 0 92 -21,-0.1 -2,-0.4 0, 0.0 0, 0.0 -0.391 81.0 -95.3-133.9-149.2 -1.5 -11.4 8.3 23 23 A A S S+ 0 0 34 -2,-0.1 4,-0.4 3,-0.1 -2,-0.0 0.372 107.0 61.3-120.9 -1.2 -3.5 -8.5 6.8 24 24 A G S > S+ 0 0 33 2,-0.2 4,-2.8 3,-0.2 5,-0.3 0.937 104.0 40.6 -89.4 -64.5 -4.0 -6.3 9.8 25 25 A T H > S+ 0 0 90 1,-0.3 4,-2.0 2,-0.2 5,-0.1 0.827 123.2 45.8 -53.4 -32.4 -0.5 -5.3 11.0 26 26 A A H > S+ 0 0 1 2,-0.2 4,-1.8 1,-0.2 -1,-0.3 0.824 110.5 52.2 -80.0 -33.7 0.3 -4.9 7.4 27 27 A E H > S+ 0 0 81 -4,-0.4 4,-1.2 2,-0.2 -2,-0.2 0.832 114.9 43.0 -71.0 -32.5 -2.9 -3.0 6.6 28 28 A K H X S+ 0 0 151 -4,-2.8 4,-2.6 2,-0.2 -2,-0.2 0.941 112.8 49.4 -77.7 -51.6 -2.1 -0.6 9.5 29 29 A Y H X S+ 0 0 155 -4,-2.0 4,-2.2 -5,-0.3 5,-0.3 0.903 114.4 46.7 -54.5 -44.4 1.6 -0.1 8.8 30 30 A F H X S+ 0 0 3 -4,-1.8 4,-2.4 1,-0.2 -1,-0.2 0.879 111.6 51.1 -66.3 -38.4 0.9 0.6 5.2 31 31 A K H X S+ 0 0 85 -4,-1.2 4,-2.3 -5,-0.2 -2,-0.2 0.855 110.3 51.1 -67.1 -35.2 -1.9 3.0 6.1 32 32 A L H X S+ 0 0 119 -4,-2.6 4,-1.6 2,-0.2 -2,-0.2 0.989 116.5 36.1 -65.3 -62.3 0.4 4.8 8.5 33 33 A I H X S+ 0 0 85 -4,-2.2 4,-2.7 2,-0.2 -2,-0.2 0.911 119.4 51.6 -58.2 -45.2 3.3 5.4 6.1 34 34 A A H X S+ 0 0 3 -4,-2.4 4,-1.3 -5,-0.3 -1,-0.2 0.950 110.2 47.0 -57.8 -52.9 0.9 6.0 3.2 35 35 A N H < S+ 0 0 72 -4,-2.3 4,-0.3 -5,-0.2 -1,-0.2 0.787 114.8 49.6 -60.6 -27.5 -1.2 8.6 5.0 36 36 A A H < S+ 0 0 75 -4,-1.6 -1,-0.2 -5,-0.2 -2,-0.2 0.856 112.2 47.1 -79.5 -37.8 2.1 10.2 6.0 37 37 A K H < S- 0 0 140 -4,-2.7 2,-0.3 1,-0.2 -2,-0.2 0.993 130.4 -30.3 -66.1 -79.4 3.6 10.3 2.5 38 38 A T S < S+ 0 0 19 -4,-1.3 2,-0.3 -5,-0.1 -1,-0.2 -0.921 70.5 147.0-150.9 120.1 0.8 11.6 0.3 39 39 A V + 0 0 18 -2,-0.3 17,-0.1 -4,-0.3 -30,-0.1 -0.915 22.5 108.8-157.0 126.1 -3.0 11.3 0.8 40 40 A E + 0 0 167 -2,-0.3 3,-0.1 15,-0.2 16,-0.1 0.287 66.8 64.7-161.9 -41.6 -5.9 13.6 -0.0 41 41 A G S S- 0 0 28 1,-0.2 2,-0.3 -33,-0.2 15,-0.3 0.622 102.7 -38.9 -67.9-132.2 -7.9 12.2 -3.0 42 42 A V E -D 55 0A 82 13,-1.0 13,-1.4 14,-0.1 2,-0.5 -0.783 52.6-129.8-102.9 145.6 -9.8 9.0 -2.8 43 43 A W E -D 54 0A 83 -2,-0.3 2,-0.3 11,-0.2 11,-0.2 -0.808 26.2-174.4 -96.8 129.2 -8.7 5.8 -1.1 44 44 A T E -D 53 0A 58 9,-3.3 9,-2.8 -2,-0.5 2,-0.4 -0.907 6.8-170.6-123.0 150.7 -8.8 2.5 -3.0 45 45 A Y E -D 52 0A 76 -2,-0.3 2,-0.6 7,-0.2 7,-0.2 -0.978 14.2-145.0-144.9 128.3 -8.2 -1.1 -2.0 46 46 A K E > -D 51 0A 119 5,-2.7 5,-1.7 -2,-0.4 4,-0.4 -0.822 7.7-171.0 -96.1 120.4 -7.9 -4.2 -4.1 47 47 A D T 5S+ 0 0 125 -2,-0.6 -1,-0.1 1,-0.2 5,-0.0 0.045 73.9 80.2 -96.0 25.5 -9.2 -7.4 -2.4 48 48 A E T 5S- 0 0 155 3,-0.1 -1,-0.2 0, 0.0 -2,-0.0 0.770 118.7 -2.2 -98.1 -34.4 -7.8 -9.6 -5.2 49 49 A I T 5S- 0 0 87 -3,-0.4 -45,-0.3 2,-0.1 -2,-0.1 0.073 107.4 -95.7-145.2 23.6 -4.2 -9.7 -3.9 50 50 A K T 5 + 0 0 59 -4,-0.4 -46,-1.7 1,-0.2 2,-0.3 0.976 65.3 156.6 55.9 85.3 -4.3 -7.5 -0.8 51 51 A T E < -bD 4 46A 10 -5,-1.7 -5,-2.7 -48,-0.2 2,-0.3 -0.919 30.4-152.1-146.6 117.2 -3.1 -4.1 -2.1 52 52 A F E +bD 5 45A 28 -48,-1.8 -46,-2.1 -2,-0.3 2,-0.4 -0.690 20.0 179.2 -88.4 137.0 -3.8 -0.7 -0.6 53 53 A T E - D 0 44A 23 -9,-2.8 -9,-3.3 -2,-0.3 2,-0.6 -0.997 19.7-160.2-143.2 137.1 -3.8 2.3 -3.0 54 54 A V E - D 0 43A 0 -48,-0.5 -46,-2.8 -2,-0.4 -11,-0.2 -0.887 18.3-177.0-120.2 100.4 -4.4 6.0 -2.5 55 55 A T E cD 8 42A 48 -13,-1.4 -13,-1.0 -2,-0.6 -15,-0.2 -0.584 360.0 360.0 -93.9 157.5 -5.3 7.9 -5.7 56 56 A E 0 0 151 -48,-0.5 -1,-0.1 -15,-0.3 -47,-0.1 -0.359 360.0 360.0 -74.7 360.0 -5.9 11.6 -6.0