==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=26-FEB-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER DE NOVO PROTEIN 08-AUG-11 2LHE . COMPND 2 MOLECULE: GB98; . SOURCE 2 ORGANISM_SCIENTIFIC: ARTIFICIAL GENE; . AUTHOR Y.HE,Y.CHEN,P.ALEXANDER,P.BRYAN,J.ORBAN . 56 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4196.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 40 71.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 6 10.7 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 14 25.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 1 1.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 4 7.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 3 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 19.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 2 3.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A T 0 0 87 0, 0.0 19,-1.7 0, 0.0 2,-0.9 0.000 360.0 360.0 360.0 152.9 3.1 -14.6 1.0 2 2 A T E -A 19 0A 79 17,-0.3 17,-0.3 15,-0.1 2,-0.1 -0.491 360.0-162.1 -65.9 102.2 5.1 -12.2 -1.2 3 3 A Y E -A 18 0A 11 15,-3.0 15,-0.7 -2,-0.9 2,-0.4 -0.440 4.7-147.7 -84.7 161.1 2.7 -9.3 -1.6 4 4 A K E -Ab 17 51A 96 46,-1.2 48,-2.4 13,-0.2 2,-0.4 -0.996 8.7-164.9-134.8 134.1 3.0 -6.6 -4.3 5 5 A L E -Ab 16 52A 0 11,-3.6 11,-1.4 -2,-0.4 2,-0.4 -0.933 6.3-175.1-119.9 144.0 2.0 -2.9 -4.1 6 6 A I E -Ab 15 53A 22 46,-1.8 48,-2.0 -2,-0.4 2,-0.5 -0.956 9.1-160.6-139.1 116.2 1.5 -0.4 -6.8 7 7 A L E -Ab 14 54A 0 7,-2.4 7,-1.5 -2,-0.4 2,-0.4 -0.838 7.4-167.4-100.9 130.5 0.8 3.3 -6.0 8 8 A N E +Ab 13 55A 46 46,-1.6 48,-0.6 -2,-0.5 5,-0.1 -0.950 25.6 147.0-119.9 136.8 -0.7 5.5 -8.6 9 9 A L S S- 0 0 53 3,-0.6 -1,-0.1 -2,-0.4 4,-0.1 0.599 79.0 -49.2-128.9 -51.4 -1.0 9.3 -8.5 10 10 A K S S- 0 0 180 2,-0.5 3,-0.1 46,-0.1 -2,-0.0 0.263 111.7 -21.7-155.3 -60.0 -0.7 10.7 -12.1 11 11 A Q S S+ 0 0 183 1,-0.2 2,-0.0 0, 0.0 0, 0.0 0.572 112.2 69.9-128.1 -67.2 2.2 9.4 -14.1 12 12 A A - 0 0 85 -4,-0.1 -3,-0.6 1,-0.1 -2,-0.5 -0.328 67.3-152.6 -61.2 139.0 5.1 8.0 -11.9 13 13 A K E -A 8 0A 121 -5,-0.1 2,-0.2 -4,-0.1 -5,-0.2 -0.963 2.1-151.3-121.2 132.5 4.2 4.7 -10.1 14 14 A E E -A 7 0A 67 -7,-1.5 -7,-2.4 -2,-0.4 2,-0.3 -0.633 10.3-149.5 -98.3 157.1 5.7 3.5 -6.9 15 15 A E E +A 6 0A 123 -2,-0.2 2,-0.3 -9,-0.2 -9,-0.2 -0.854 14.7 176.0-125.6 162.0 6.1 -0.1 -5.8 16 16 A A E -A 5 0A 5 -11,-1.4 -11,-3.6 -2,-0.3 2,-0.4 -0.954 7.9-163.7-163.2 143.0 6.2 -2.1 -2.5 17 17 A I E -A 4 0A 94 -2,-0.3 2,-0.4 -13,-0.2 -13,-0.2 -0.993 5.5-178.9-136.5 141.8 6.4 -5.7 -1.5 18 18 A K E -A 3 0A 61 -15,-0.7 -15,-3.0 -2,-0.4 2,-0.7 -0.951 14.9-152.0-144.4 121.1 5.7 -7.5 1.8 19 19 A E E +A 2 0A 157 -2,-0.4 -17,-0.3 -17,-0.3 2,-0.3 -0.820 48.1 109.2 -95.8 111.5 6.1 -11.3 2.5 20 20 A A - 0 0 30 -19,-1.7 6,-0.1 -2,-0.7 -2,-0.1 -0.873 64.2-130.7-177.6 143.9 3.7 -12.5 5.2 21 21 A V S S+ 0 0 130 -2,-0.3 2,-1.7 1,-0.2 3,-0.1 0.825 93.9 82.5 -70.2 -32.2 0.6 -14.6 5.6 22 22 A D >> - 0 0 97 1,-0.2 3,-3.1 -3,-0.1 4,-0.8 -0.579 64.2-170.0 -77.4 87.0 -1.2 -11.9 7.6 23 23 A A H >> S+ 0 0 29 -2,-1.7 4,-1.9 1,-0.3 3,-0.6 0.839 83.8 65.3 -45.2 -39.5 -2.4 -9.8 4.6 24 24 A G H 3> S+ 0 0 22 1,-0.2 4,-1.2 2,-0.2 -1,-0.3 0.775 95.5 59.0 -57.2 -25.6 -3.3 -7.1 7.2 25 25 A I H <> S+ 0 0 83 -3,-3.1 4,-1.1 2,-0.2 -1,-0.2 0.893 103.9 49.2 -71.2 -40.6 0.4 -6.7 7.9 26 26 A A H XX S+ 0 0 1 -4,-0.8 4,-3.8 -3,-0.6 3,-0.9 0.943 107.1 53.4 -65.1 -48.0 1.2 -5.8 4.3 27 27 A E H 3X S+ 0 0 62 -4,-1.9 4,-3.4 1,-0.3 5,-0.3 0.872 104.2 59.0 -54.8 -34.9 -1.5 -3.2 4.0 28 28 A K H 3< S+ 0 0 124 -4,-1.2 4,-0.5 -5,-0.2 -1,-0.3 0.870 114.5 35.4 -61.2 -36.7 0.1 -1.7 7.1 29 29 A Y H S+ 0 0 108 -4,-0.5 4,-0.9 -5,-0.3 -2,-0.2 0.944 117.7 24.6 -66.2 -46.2 3.2 2.8 5.7 33 33 A I H X>S+ 0 0 46 -4,-2.8 4,-4.6 2,-0.2 5,-0.7 0.809 117.5 62.5 -86.8 -32.6 4.9 3.9 2.5 34 34 A A H <5S+ 0 0 5 -4,-2.1 4,-0.4 -5,-0.4 -3,-0.2 0.850 111.4 40.4 -60.7 -32.0 1.8 4.9 0.7 35 35 A N H <5S+ 0 0 126 -4,-1.6 -1,-0.2 2,-0.2 -2,-0.2 0.805 119.1 45.8 -84.1 -32.2 1.4 7.5 3.4 36 36 A A H <5S+ 0 0 82 -4,-0.9 -2,-0.2 -5,-0.2 -3,-0.2 0.874 132.2 20.0 -77.0 -39.4 5.1 8.4 3.5 37 37 A K T <5S+ 0 0 127 -4,-4.6 -3,-0.2 -5,-0.0 -2,-0.2 0.893 130.3 35.6 -93.8 -56.0 5.3 8.6 -0.3 38 38 A T < - 0 0 8 -5,-0.7 -29,-0.1 -4,-0.4 3,-0.0 0.003 66.5-144.1 -84.8-165.7 1.8 9.1 -1.5 39 39 A V - 0 0 89 1,-0.1 2,-0.2 -3,-0.0 -1,-0.1 0.614 60.7 -42.1-128.9 -52.0 -1.0 11.1 0.2 40 40 A E + 0 0 156 2,-0.0 2,-0.3 -6,-0.0 -1,-0.1 -0.784 62.3 136.7 175.2 139.7 -4.4 9.4 -0.3 41 41 A G - 0 0 33 -2,-0.2 2,-0.8 -3,-0.0 15,-0.3 -0.920 60.2 -41.4-167.7-168.9 -6.4 7.6 -3.0 42 42 A V E -C 55 0A 89 13,-3.5 13,-1.3 -2,-0.3 2,-0.3 -0.645 57.8-151.1 -78.7 107.9 -8.7 4.6 -3.8 43 43 A W E +C 54 0A 92 -2,-0.8 2,-0.3 11,-0.2 11,-0.2 -0.641 23.3 165.7 -83.5 133.3 -7.2 1.6 -2.0 44 44 A T E -C 53 0A 68 9,-2.5 9,-4.1 -2,-0.3 2,-0.4 -0.993 16.6-163.2-147.0 150.2 -7.7 -1.8 -3.5 45 45 A Y E -C 52 0A 66 -2,-0.3 2,-0.4 7,-0.3 7,-0.3 -0.996 10.2-144.2-138.5 142.5 -6.2 -5.3 -3.0 46 46 A K E > -C 51 0A 120 5,-3.1 5,-1.8 -2,-0.4 4,-0.1 -0.877 8.1-170.8-108.0 136.1 -6.3 -8.5 -5.1 47 47 A D T 5S+ 0 0 123 -2,-0.4 -1,-0.1 3,-0.2 5,-0.0 0.746 79.6 75.6 -92.5 -28.7 -6.4 -12.0 -3.5 48 48 A E T 5S+ 0 0 176 1,-0.2 -1,-0.1 3,-0.1 -2,-0.0 0.808 127.0 1.5 -52.3 -32.4 -5.8 -13.8 -6.8 49 49 A I T 5S- 0 0 92 2,-0.1 -1,-0.2 -45,-0.1 -2,-0.2 0.176 103.6-110.7-142.2 15.8 -2.2 -12.8 -6.5 50 50 A K T 5 + 0 0 69 1,-0.2 -46,-1.2 -4,-0.1 2,-0.4 0.966 62.0 151.5 48.0 77.3 -2.1 -10.9 -3.2 51 51 A T E < -bC 4 46A 18 -5,-1.8 -5,-3.1 -48,-0.2 2,-0.3 -0.978 34.2-151.1-143.2 127.7 -1.5 -7.4 -4.6 52 52 A F E -bC 5 45A 18 -48,-2.4 -46,-1.8 -2,-0.4 2,-0.3 -0.757 18.2-179.5 -97.9 141.2 -2.4 -4.0 -3.2 53 53 A T E -bC 6 44A 35 -9,-4.1 -9,-2.5 -2,-0.3 2,-0.4 -0.999 11.3-163.2-143.8 139.9 -3.0 -1.0 -5.4 54 54 A V E -bC 7 43A 2 -48,-2.0 -46,-1.6 -2,-0.3 2,-0.4 -0.943 3.9-163.7-123.6 144.2 -4.0 2.7 -4.9 55 55 A T E bC 8 42A 69 -13,-1.3 -13,-3.5 -2,-0.4 -46,-0.2 -0.991 360.0 360.0-131.2 129.5 -5.4 5.2 -7.4 56 56 A E 0 0 121 -48,-0.6 -47,-0.2 -2,-0.4 -1,-0.1 0.765 360.0 360.0-114.2 360.0 -5.5 9.0 -7.0