==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER NEUROTOXIN 02-APR-98 1LIR . COMPND 2 MOLECULE: LQ2; . SOURCE 2 ORGANISM_SCIENTIFIC: LEIURUS QUINQUESTRIATUS HEBRAEUS; . AUTHOR J.G.RENISIO,Z.LU,E.BLANC,W.JIN,J.H.LEWIS,O.BORNET,H.DARBON . 37 1 3 3 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 2698.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 56.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 5 13.5 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 9 24.3 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A X 0 0 54 0, 0.0 35,-0.1 0, 0.0 33,-0.0 0.000 360.0 360.0 360.0 71.7 2.1 1.1 -1.4 2 2 A F - 0 0 87 33,-0.6 2,-0.2 1,-0.1 32,-0.2 0.557 360.0-176.1 -4.0 127.2 1.4 3.9 -4.0 3 3 A T - 0 0 34 30,-1.5 -1,-0.1 2,-0.2 17,-0.0 -0.592 41.5-107.7-124.1-176.2 0.3 3.0 -7.5 4 4 A Q S S+ 0 0 183 -2,-0.2 2,-0.3 28,-0.1 30,-0.1 -0.254 79.4 120.9-109.7 37.4 -0.5 4.6 -10.8 5 5 A E - 0 0 61 28,-0.4 28,-2.0 1,-0.0 2,-0.3 -0.723 59.3-118.3-101.8 153.8 -4.2 3.7 -10.3 6 6 A S - 0 0 78 26,-0.3 26,-0.3 -2,-0.3 2,-0.3 -0.695 25.3-174.9-104.0 149.9 -6.9 6.4 -10.2 7 7 A a - 0 0 6 -2,-0.3 3,-0.1 22,-0.1 26,-0.0 -0.809 26.3-163.4-131.4 170.3 -9.4 7.6 -7.6 8 8 A T S S+ 0 0 119 1,-0.5 2,-0.3 -2,-0.3 23,-0.1 0.566 86.0 7.1-118.9 -44.0 -12.3 10.0 -7.3 9 9 A A > - 0 0 42 1,-0.1 4,-1.9 22,-0.1 -1,-0.5 -0.875 66.6-119.2-138.5 169.3 -12.3 10.1 -3.5 10 10 A S H > S+ 0 0 47 -2,-0.3 4,-1.8 2,-0.2 16,-0.2 0.912 117.6 58.5 -72.7 -46.4 -10.2 8.8 -0.5 11 11 A N H > S+ 0 0 108 1,-0.3 4,-0.5 2,-0.2 -1,-0.2 0.801 111.7 41.6 -50.6 -32.8 -13.2 6.8 0.6 12 12 A Q H >> S+ 0 0 77 2,-0.2 4,-1.5 1,-0.2 3,-0.8 0.832 103.5 65.0 -85.1 -38.9 -13.0 5.2 -2.8 13 13 A b H 3X S+ 0 0 0 -4,-1.9 4,-2.2 1,-0.3 -2,-0.2 0.785 94.3 64.6 -55.6 -27.1 -9.2 4.9 -2.7 14 14 A W H 3X S+ 0 0 76 -4,-1.8 4,-1.9 12,-0.2 -1,-0.3 0.938 98.4 51.0 -60.5 -48.7 -9.8 2.5 0.2 15 15 A S H X S+ 0 0 0 -4,-2.2 4,-2.1 1,-0.2 6,-1.7 0.772 103.3 58.4 -68.3 -27.8 -6.3 -0.4 -1.4 18 18 A K H 3X S+ 0 0 107 -4,-1.9 4,-0.7 4,-0.3 -1,-0.2 0.856 112.8 38.9 -69.9 -35.6 -8.4 -3.5 -0.5 19 19 A R H 3< S+ 0 0 172 -4,-1.3 -1,-0.2 -3,-0.2 -2,-0.2 0.200 123.7 44.5 -98.6 14.3 -7.6 -4.9 -4.0 20 20 A L H <4 S- 0 0 53 -3,-0.7 -2,-0.2 3,-0.2 -3,-0.2 0.679 140.5 -8.7-114.0 -71.8 -4.0 -3.6 -3.8 21 21 A H H < S- 0 0 75 -4,-2.1 -3,-0.1 2,-0.1 -2,-0.1 -0.388 96.6-103.0-131.7 50.5 -2.6 -4.3 -0.3 22 22 A N S < S+ 0 0 120 -4,-0.7 -4,-0.3 -6,-0.1 2,-0.3 0.731 81.7 125.5 24.8 52.5 -5.8 -5.5 1.4 23 23 A T - 0 0 14 -6,-1.7 -3,-0.2 -9,-0.2 -2,-0.1 -0.852 57.5-157.8-129.9 165.0 -6.3 -2.2 3.3 24 24 A N S S+ 0 0 87 -2,-0.3 2,-0.6 -7,-0.2 -10,-0.2 0.048 74.7 96.7-125.7 14.1 -8.9 0.4 3.8 25 25 A R + 0 0 170 11,-0.2 11,-0.9 -11,-0.2 2,-0.3 -0.642 54.5 130.1-111.1 70.2 -6.3 3.1 4.7 26 26 A G E -A 35 0A 2 -2,-0.6 2,-0.3 -16,-0.2 -12,-0.2 -0.851 41.7-149.6-122.7 157.4 -5.8 4.9 1.4 27 27 A K E -A 34 0A 55 7,-2.4 7,-2.3 -2,-0.3 2,-0.6 -0.956 13.5-132.4-128.4 145.6 -5.8 8.5 0.4 28 28 A a E +A 33 0A 41 -2,-0.3 2,-0.4 5,-0.2 5,-0.2 -0.891 29.9 169.3-104.0 121.8 -6.8 10.1 -3.0 29 29 A M E > -A 32 0A 97 3,-2.6 3,-1.5 -2,-0.6 -22,-0.1 -0.999 69.0 -12.6-133.3 133.2 -4.4 12.6 -4.4 30 30 A N T 3 S- 0 0 132 -2,-0.4 -1,-0.2 1,-0.3 3,-0.1 0.899 126.3 -58.5 34.6 64.9 -4.5 14.1 -8.0 31 31 A K T 3 S+ 0 0 135 -23,-0.1 2,-0.3 1,-0.1 -1,-0.3 0.766 119.0 109.1 33.5 46.3 -7.1 11.4 -8.9 32 32 A K E < -A 29 0A 72 -3,-1.5 -3,-2.6 -26,-0.3 2,-0.4 -0.964 65.9-122.4-138.4 150.1 -4.6 8.7 -8.0 33 33 A b E -A 28 0A 0 -28,-2.0 -30,-1.5 -2,-0.3 2,-0.4 -0.845 19.3-172.5-108.6 138.1 -4.6 6.3 -5.0 34 34 A R E -A 27 0A 79 -7,-2.3 -7,-2.4 -2,-0.4 2,-0.3 -0.969 14.6-167.9-120.5 133.8 -2.0 5.9 -2.3 35 35 A c E -A 26 0A 0 -2,-0.4 -33,-0.6 -9,-0.2 2,-0.2 -0.807 13.5-135.9-125.5 167.0 -2.3 3.0 0.3 36 36 A Y 0 0 113 -11,-0.9 -11,-0.2 -2,-0.3 -15,-0.1 -0.633 360.0 360.0-111.5 170.4 -0.8 1.9 3.6 37 37 A S 0 0 131 -2,-0.2 -1,-0.2 -14,-0.0 -12,-0.1 0.772 360.0 360.0 24.4 360.0 0.3 -1.6 4.7