==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=8-JUL-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER LIPID TRANSPORT 29-AUG-11 2LID . COMPND 2 MOLECULE: VITELLOGENIN; . SOURCE 2 SYNTHETIC: YES . AUTHOR H.HAVUKAINEN,O.HALSKAU JR. . 35 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3951.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 7 20.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 2 5.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 1 2.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A E 0 0 239 0, 0.0 2,-0.2 0, 0.0 3,-0.0 0.000 360.0 360.0 360.0 -68.9 10.5 14.1 5.7 2 2 A H + 0 0 169 1,-0.1 0, 0.0 2,-0.0 0, 0.0 -0.545 360.0 48.7-107.2 174.8 13.1 11.2 5.3 3 3 A K - 0 0 150 -2,-0.2 -1,-0.1 1,-0.1 0, 0.0 0.935 62.9-142.5 58.9 97.6 14.2 8.4 7.7 4 4 A H - 0 0 94 1,-0.1 -1,-0.1 -3,-0.0 4,-0.1 0.579 26.4-136.6 -64.6 -8.0 11.1 6.7 9.0 5 5 A S - 0 0 86 2,-0.1 -1,-0.1 4,-0.0 -2,-0.0 0.720 57.5 -70.3 57.5 21.6 13.0 6.4 12.2 6 6 A D S S+ 0 0 112 1,-0.0 0, 0.0 0, 0.0 0, 0.0 0.717 88.8 124.6 65.1 125.2 11.7 2.8 12.4 7 7 A E S S+ 0 0 166 0, 0.0 -2,-0.1 0, 0.0 -3,-0.0 -0.007 84.0 11.2-167.5 -73.4 8.0 2.2 13.1 8 8 A S S S- 0 0 70 -4,-0.1 4,-0.0 3,-0.0 -4,-0.0 0.511 83.1-139.0 -99.7 -10.1 6.1 0.1 10.6 9 9 A T S S+ 0 0 102 1,-0.1 3,-0.1 -5,-0.1 -4,-0.0 0.654 98.2 56.1 59.3 15.4 9.3 -1.0 8.8 10 10 A S S > S- 0 0 26 1,-0.1 3,-2.5 -6,-0.1 2,-1.7 0.281 88.4-149.1-152.1 -0.2 7.2 -0.5 5.6 11 11 A E T 3 S- 0 0 105 1,-0.3 3,-0.1 -7,-0.0 -1,-0.1 -0.397 72.6 -40.4 62.3 -86.7 6.1 3.1 5.9 12 12 A X T 3 S+ 0 0 176 -2,-1.7 2,-0.3 1,-0.4 -1,-0.3 0.166 127.1 41.9-158.0 17.3 2.8 2.7 4.0 13 13 A F < + 0 0 116 -3,-2.5 -1,-0.4 2,-0.0 8,-0.0 -0.881 41.1 147.2-171.4 136.7 3.6 0.4 1.1 14 14 A E - 0 0 98 -2,-0.3 11,-0.0 -3,-0.1 -3,-0.0 -0.282 36.2-142.4-173.7 73.3 5.6 -2.7 0.4 15 15 A S + 0 0 88 1,-0.2 3,-0.1 6,-0.1 -2,-0.0 -0.208 30.3 164.4 -46.8 115.1 4.2 -5.0 -2.2 16 16 A I - 0 0 107 1,-0.1 2,-0.2 0, 0.0 -1,-0.2 0.693 64.0 -25.3-105.3 -30.5 4.8 -8.6 -1.0 17 17 A A - 0 0 48 0, 0.0 -1,-0.1 0, 0.0 0, 0.0 -0.664 67.1 -91.6-154.9-151.6 2.5 -10.4 -3.3 18 18 A D S S+ 0 0 140 -2,-0.2 -3,-0.0 3,-0.1 0, 0.0 0.024 119.4 39.1-129.9 22.8 -0.7 -10.1 -5.4 19 19 A N S S+ 0 0 129 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.332 119.9 40.9-146.5 -11.6 -3.1 -11.1 -2.7 20 20 A N S >> S+ 0 0 68 3,-0.1 4,-2.3 2,-0.0 3,-1.1 0.791 110.5 50.3-107.7 -54.0 -1.6 -9.5 0.4 21 21 A D H 3>>S+ 0 0 15 1,-0.3 5,-2.3 2,-0.2 4,-0.7 0.827 103.8 65.7 -55.6 -31.0 -0.5 -6.1 -0.7 22 22 A D H 345S+ 0 0 60 1,-0.2 -1,-0.3 3,-0.2 6,-0.1 -0.065 115.3 26.3 -83.4 35.5 -4.0 -5.8 -2.1 23 23 A S H <45S+ 0 0 83 -3,-1.1 -2,-0.2 -2,-0.4 -1,-0.2 0.345 124.2 39.4-161.2 -37.4 -5.4 -5.9 1.4 24 24 A Y H <5S+ 0 0 90 -4,-2.3 -3,-0.2 2,-0.1 -2,-0.1 0.863 131.8 18.4 -94.0 -43.7 -2.9 -4.6 4.0 25 25 A F T <5S+ 0 0 74 -4,-0.7 -3,-0.2 -5,-0.4 -4,-0.1 0.803 127.5 50.2 -96.5 -37.0 -1.3 -1.7 2.2 26 26 A Q < + 0 0 61 -5,-2.3 -4,-0.1 -6,-0.2 -5,-0.1 0.997 62.6 161.8 -64.2 -66.4 -3.9 -1.0 -0.5 27 27 A R S S- 0 0 213 -6,-0.2 -4,-0.1 1,-0.1 -5,-0.1 0.882 84.1 -51.9 42.9 50.2 -7.0 -0.9 1.6 28 28 A K - 0 0 140 1,-0.1 -1,-0.1 -6,-0.1 -2,-0.0 0.964 60.3-160.6 52.8 88.3 -8.9 0.8 -1.2 29 29 A P S S+ 0 0 107 0, 0.0 -1,-0.1 0, 0.0 2,-0.1 0.627 70.7 72.0 -71.6 -13.0 -6.7 3.8 -2.2 30 30 A K S S- 0 0 142 1,-0.1 2,-0.1 0, 0.0 0, 0.0 -0.309 83.8-109.8 -94.9-179.1 -9.7 5.5 -3.8 31 31 A L - 0 0 136 -2,-0.1 2,-0.8 1,-0.0 -1,-0.1 -0.380 40.7 -80.9-102.2-177.0 -12.8 7.1 -2.3 32 32 A T + 0 0 144 1,-0.2 -1,-0.0 -2,-0.1 0, 0.0 -0.785 58.3 148.7 -92.3 108.2 -16.4 6.1 -2.2 33 33 A E + 0 0 117 -2,-0.8 -1,-0.2 0, 0.0 0, 0.0 0.859 16.6 178.9 -99.9 -68.1 -18.1 7.0 -5.5 34 34 A A 0 0 91 0, 0.0 -2,-0.1 0, 0.0 0, 0.0 0.994 360.0 360.0 58.1 75.1 -20.9 4.5 -6.2 35 35 A P 0 0 189 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.960 360.0 360.0 -73.5 360.0 -22.3 5.8 -9.5