==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=15-JAN-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 22-SEP-11 2LJQ . COMPND 2 MOLECULE: BACTERIOCIN LEUCOCIN-A; . SOURCE 2 ORGANISM_SCIENTIFIC: LEUCONOSTOC GELIDUM; . AUTHOR C.S.SIT,C.T.LOHANS,M.J.VAN BELKUM,C.D.CAMPBELL,M.MISKOLZIE, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3478.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 67.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 2 5.4 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 6 16.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 17 45.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 213 0, 0.0 2,-0.3 0, 0.0 3,-0.1 0.000 360.0 360.0 360.0 115.6 2.1 -0.0 -1.2 2 2 A Y + 0 0 191 1,-0.1 4,-0.1 4,-0.0 16,-0.1 -0.982 360.0 16.8-157.6 144.6 3.1 -3.4 -2.7 3 3 A Y S S+ 0 0 153 -2,-0.3 -1,-0.1 15,-0.2 3,-0.1 0.957 122.0 49.2 58.2 54.2 3.9 -4.8 -6.2 4 4 A G S S+ 0 0 41 1,-0.1 2,-1.1 -3,-0.1 -1,-0.1 0.122 81.4 83.3-179.6 -45.5 4.4 -1.4 -7.8 5 5 A N + 0 0 104 13,-0.1 2,-0.5 2,-0.0 -2,-0.2 -0.700 56.6 175.8 -85.4 98.7 6.8 0.8 -5.8 6 6 A G - 0 0 26 -2,-1.1 4,-0.2 1,-0.1 12,-0.1 -0.911 25.0-165.0-110.3 127.7 10.3 -0.2 -6.8 7 7 A V S S+ 0 0 132 -2,-0.5 -1,-0.1 10,-0.1 3,-0.1 0.902 75.6 64.4 -72.3 -42.9 13.4 1.5 -5.5 8 8 A H S S- 0 0 137 1,-0.1 2,-0.5 5,-0.1 -2,-0.1 -0.281 106.9 -79.1 -77.6 166.7 15.7 -0.0 -8.1 9 9 A S >> - 0 0 81 1,-0.2 4,-1.5 -2,-0.0 3,-0.8 -0.547 31.6-152.1 -71.3 118.0 15.4 0.6 -11.8 10 10 A T H 3> S+ 0 0 69 -2,-0.5 4,-0.7 1,-0.2 5,-0.2 0.767 90.9 72.8 -60.4 -25.2 12.6 -1.5 -13.3 11 11 A K H 34 S+ 0 0 193 2,-0.2 3,-0.3 1,-0.2 -1,-0.2 0.928 103.0 38.1 -55.3 -48.9 14.5 -1.5 -16.5 12 12 A S H <4 S- 0 0 113 -3,-0.8 2,-0.2 1,-0.2 -2,-0.2 0.976 143.2 -0.6 -67.7 -57.4 17.2 -3.9 -15.2 13 13 A G H X + 0 0 19 -4,-1.5 4,-1.2 1,-0.1 -1,-0.2 -0.666 67.3 158.2-139.9 83.6 14.9 -6.1 -13.1 14 14 A S H X S+ 0 0 53 -4,-0.7 4,-1.4 -3,-0.3 -1,-0.1 0.972 88.0 31.3 -67.7 -56.1 11.2 -5.1 -13.2 15 15 A S H > S+ 0 0 91 1,-0.2 4,-1.5 2,-0.2 5,-0.2 0.835 120.0 54.6 -71.5 -33.3 9.8 -8.5 -12.2 16 16 A V H > S+ 0 0 96 1,-0.2 4,-2.0 2,-0.2 -1,-0.2 0.764 104.2 57.0 -71.0 -25.4 12.8 -9.3 -10.1 17 17 A N H X S+ 0 0 10 -4,-1.2 4,-2.4 2,-0.2 -2,-0.2 0.953 103.5 50.2 -70.3 -51.9 12.3 -6.0 -8.2 18 18 A W H X S+ 0 0 41 -4,-1.4 4,-1.4 1,-0.2 -15,-0.2 0.940 117.0 40.7 -51.8 -53.8 8.8 -6.8 -7.1 19 19 A G H X S+ 0 0 40 -4,-1.5 4,-3.1 1,-0.2 5,-0.2 0.906 110.9 57.3 -63.3 -43.0 9.8 -10.2 -5.7 20 20 A E H X S+ 0 0 113 -4,-2.0 4,-2.3 1,-0.2 -1,-0.2 0.879 102.6 57.1 -55.5 -40.2 13.0 -8.9 -4.3 21 21 A A H X S+ 0 0 55 -4,-2.4 4,-1.3 2,-0.2 -1,-0.2 0.966 113.5 36.2 -55.7 -58.3 11.1 -6.4 -2.2 22 22 A F H >X S+ 0 0 102 -4,-1.4 4,-1.4 1,-0.2 3,-0.5 0.923 114.6 56.7 -62.2 -45.9 8.9 -9.0 -0.5 23 23 A S H 3X S+ 0 0 64 -4,-3.1 4,-0.6 1,-0.3 -1,-0.2 0.855 103.4 56.0 -54.4 -36.9 11.8 -11.5 -0.3 24 24 A A H >< S+ 0 0 49 -4,-2.3 3,-1.0 -5,-0.2 4,-0.4 0.882 103.3 53.5 -64.1 -39.4 13.8 -8.8 1.6 25 25 A G H XX S+ 0 0 32 -4,-1.3 3,-1.4 -3,-0.5 4,-1.4 0.805 92.8 72.5 -66.2 -29.4 11.1 -8.5 4.2 26 26 A V H 3X S+ 0 0 38 -4,-1.4 4,-2.1 1,-0.3 -1,-0.2 0.807 87.8 64.4 -55.1 -30.3 11.2 -12.3 4.8 27 27 A H H S+ 0 0 202 -3,-1.4 3,-1.0 -4,-0.4 4,-0.6 0.951 114.2 40.5 -67.5 -51.2 12.8 -9.6 9.2 29 29 A L H 3< S+ 0 0 70 -4,-1.4 3,-0.5 1,-0.2 4,-0.3 0.770 104.7 69.3 -68.7 -25.8 10.1 -12.2 10.0 30 30 A A H 3< S+ 0 0 65 -4,-2.1 -1,-0.2 -5,-0.3 -2,-0.2 0.749 97.8 52.1 -63.8 -23.6 12.8 -14.9 9.7 31 31 A N H << S- 0 0 131 -3,-1.0 -1,-0.2 -4,-0.6 -2,-0.2 0.745 136.8 -4.0 -83.8 -25.9 14.3 -13.6 12.9 32 32 A G S < S+ 0 0 70 -4,-0.6 2,-0.2 -3,-0.5 -2,-0.2 -0.322 122.2 29.2-168.9 76.4 11.0 -13.7 14.8 33 33 A G S S- 0 0 46 -4,-0.3 -3,-0.1 -3,-0.2 -4,-0.1 -0.806 105.0 -39.1 174.4-130.0 7.9 -14.8 13.0 34 34 A N > + 0 0 87 -2,-0.2 2,-2.0 1,-0.1 3,-0.8 0.868 56.9 169.9 -95.2 -49.9 6.9 -17.0 10.1 35 35 A G T 3 S- 0 0 8 1,-0.2 -5,-0.2 -10,-0.1 -1,-0.1 -0.503 81.2 -17.9 74.9 -82.4 9.7 -16.3 7.6 36 36 A F T 3 0 0 187 -2,-2.0 -1,-0.2 1,-0.2 -2,-0.0 0.037 360.0 360.0-146.3 26.8 8.9 -19.1 5.1 37 37 A W < 0 0 236 -3,-0.8 -1,-0.2 0, 0.0 0, 0.0 -0.913 360.0 360.0-154.2 360.0 6.6 -21.4 7.0