==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=15-JAN-2012 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER ANTIMICROBIAL PROTEIN 23-SEP-11 2LJT . COMPND 2 MOLECULE: BACTERIOCIN LEUCOCIN-A; . SOURCE 2 ORGANISM_SCIENTIFIC: LEUCONOSTOC GELIDUM; . AUTHOR C.S.SIT,C.T.LOHANS,M.J.VAN BELKUM,C.D.CAMPBELL,M.MISKOLZIE, . 37 1 0 0 0 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 4069.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 25 67.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 8.1 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 1 2.7 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 21 56.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A K 0 0 212 0, 0.0 2,-1.7 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 74.9 2.1 -0.0 -1.2 2 2 A Y + 0 0 231 1,-0.1 2,-1.3 4,-0.0 3,-0.1 -0.586 360.0 170.9 -84.1 80.8 3.7 -3.4 -1.4 3 3 A Y - 0 0 202 -2,-1.7 3,-0.2 1,-0.1 2,-0.2 -0.308 64.6 -51.6 -86.9 52.2 6.0 -2.9 -4.3 4 4 A G S S- 0 0 50 -2,-1.3 -1,-0.1 1,-0.2 0, 0.0 -0.483 76.9 -61.7 108.9 178.7 7.8 -6.2 -3.7 5 5 A N S S- 0 0 173 -2,-0.2 -1,-0.2 -3,-0.1 -2,-0.1 0.848 77.9-102.1 -70.9 -35.0 9.5 -7.9 -0.8 6 6 A G S > S+ 0 0 26 -3,-0.2 4,-1.1 -4,-0.0 -2,-0.1 0.119 102.6 94.5 134.3 -20.8 12.1 -5.2 -0.5 7 7 A V H > S+ 0 0 106 1,-0.2 4,-1.3 2,-0.2 3,-0.2 0.888 90.3 46.2 -67.0 -40.1 15.1 -6.7 -2.1 8 8 A H H > S+ 0 0 145 1,-0.2 4,-1.7 2,-0.2 -1,-0.2 0.793 106.6 59.9 -72.4 -28.8 14.3 -5.1 -5.5 9 9 A L H > S+ 0 0 54 2,-0.2 4,-2.0 3,-0.2 -1,-0.2 0.794 102.6 54.5 -69.1 -28.3 13.6 -1.8 -3.8 10 10 A T H X S+ 0 0 54 -4,-1.1 4,-2.1 -3,-0.2 5,-0.3 0.988 113.6 36.1 -68.7 -62.0 17.2 -1.7 -2.5 11 11 A K H < S+ 0 0 188 -4,-1.3 -2,-0.2 2,-0.2 -1,-0.2 0.815 118.2 57.2 -61.6 -30.5 19.1 -2.2 -5.8 12 12 A S H < S- 0 0 94 -4,-1.7 -2,-0.2 -5,-0.2 -3,-0.2 0.997 138.2 -37.9 -64.1 -67.6 16.4 -0.0 -7.5 13 13 A G H X + 0 0 17 -4,-2.0 4,-2.6 -5,-0.1 5,-0.2 -0.218 65.5 159.9-161.8 60.8 16.7 3.1 -5.4 14 14 A L H X S+ 0 0 80 -4,-2.1 4,-2.1 1,-0.2 5,-0.2 0.807 84.7 52.7 -55.4 -30.1 17.3 2.5 -1.7 15 15 A S H > S+ 0 0 94 -5,-0.3 4,-2.2 2,-0.2 -1,-0.2 0.947 112.6 40.4 -71.6 -50.6 18.5 6.0 -1.5 16 16 A V H > S+ 0 0 85 1,-0.2 4,-1.2 2,-0.2 -2,-0.2 0.761 115.5 55.3 -69.3 -25.1 15.5 7.7 -3.1 17 17 A N H X S+ 0 0 50 -4,-2.6 4,-1.9 -8,-0.2 -2,-0.2 0.947 110.8 41.1 -72.7 -50.8 13.3 5.3 -1.1 18 18 A W H X S+ 0 0 163 -4,-2.1 4,-2.0 1,-0.2 -2,-0.2 0.923 115.0 51.6 -63.6 -45.9 14.6 6.1 2.3 19 19 A G H X S+ 0 0 40 -4,-2.2 4,-1.7 1,-0.2 -1,-0.2 0.843 109.5 50.8 -60.6 -34.3 14.8 9.9 1.6 20 20 A E H X S+ 0 0 128 -4,-1.2 4,-1.6 2,-0.2 -1,-0.2 0.883 109.3 49.7 -70.9 -39.7 11.1 9.8 0.4 21 21 A A H X S+ 0 0 67 -4,-1.9 4,-1.4 1,-0.2 -2,-0.2 0.838 109.6 52.8 -67.7 -33.7 10.0 8.0 3.6 22 22 A F H X S+ 0 0 148 -4,-2.0 4,-2.1 2,-0.2 -2,-0.2 0.915 103.7 56.3 -68.2 -44.4 11.8 10.6 5.7 23 23 A S H X S+ 0 0 84 -4,-1.7 4,-0.9 1,-0.2 3,-0.5 0.949 109.8 44.2 -52.2 -56.1 10.2 13.5 4.0 24 24 A A H X S+ 0 0 74 -4,-1.6 4,-0.9 1,-0.2 3,-0.4 0.849 111.6 55.7 -58.9 -35.3 6.6 12.3 4.7 25 25 A G H X S+ 0 0 31 -4,-1.4 4,-1.9 1,-0.2 3,-0.4 0.843 95.4 65.4 -67.3 -33.7 7.7 11.5 8.3 26 26 A V H X S+ 0 0 68 -4,-2.1 4,-2.5 -3,-0.5 -1,-0.2 0.854 97.1 56.6 -56.7 -36.4 9.0 15.0 8.9 27 27 A H H X S+ 0 0 132 -4,-0.9 4,-2.2 -3,-0.4 -1,-0.2 0.887 106.7 48.5 -63.2 -40.0 5.4 16.2 8.6 28 28 A R H < S+ 0 0 193 -4,-0.9 -1,-0.2 -3,-0.4 -2,-0.2 0.867 111.7 49.9 -68.4 -37.2 4.3 13.9 11.4 29 29 A L H >X S+ 0 0 131 -4,-1.9 4,-1.3 1,-0.2 3,-0.5 0.932 112.0 46.6 -67.2 -47.1 7.1 15.0 13.6 30 30 A A H 3< S+ 0 0 69 -4,-2.5 2,-1.5 1,-0.3 4,-0.3 0.936 112.1 51.2 -60.8 -48.8 6.4 18.7 13.1 31 31 A N T 3< S+ 0 0 94 -4,-2.2 -1,-0.3 -5,-0.2 4,-0.1 -0.467 111.4 47.3 -89.8 64.2 2.6 18.3 13.7 32 32 A G T <4 S+ 0 0 54 -2,-1.5 -1,-0.2 -3,-0.5 -2,-0.2 0.255 97.3 54.7-160.9 -55.2 3.0 16.4 17.0 33 33 A G S < S+ 0 0 67 -4,-1.3 2,-0.1 -3,-0.0 -3,-0.1 0.973 113.9 9.5 -57.5 -86.9 5.4 17.9 19.5 34 34 A N + 0 0 160 -4,-0.3 -2,-0.3 2,-0.0 2,-0.2 -0.458 67.8 169.5 -93.4 168.1 4.2 21.5 20.0 35 35 A G - 0 0 57 -2,-0.1 -4,-0.0 -4,-0.1 -5,-0.0 -0.763 34.8-151.5 180.0 131.4 1.1 23.2 18.8 36 36 A F 0 0 207 -2,-0.2 -2,-0.0 0, 0.0 -1,-0.0 0.035 360.0 360.0 -95.5 25.7 -0.8 26.4 19.3 37 37 A W 0 0 241 0, 0.0 0, 0.0 0, 0.0 0, 0.0 -0.922 360.0 360.0-151.5 360.0 -4.1 24.7 18.5