==== Secondary Structure Definition by the program DSSP, updated CMBI version by ElmK / April 1,2000 ==== DATE=6-DEC-2009 . REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637 . HEADER HORMONE/GROWTH FACTOR 25-APR-02 1LKQ . COMPND 2 MOLECULE: INSULIN; . SOURCE 2 SYNTHETIC: YES; . AUTHOR M.A.WEISS,Q.X.HUA,Y.C.CHU,W.JIA,N.F.PHILIPS,R.Y.WANG, . 51 2 3 1 2 TOTAL NUMBER OF RESIDUES, NUMBER OF CHAINS, NUMBER OF SS-BRIDGES(TOTAL,INTRACHAIN,INTERCHAIN) . 3998.0 ACCESSIBLE SURFACE OF PROTEIN (ANGSTROM**2) . 21 41.2 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(J) , SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN PARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS IN ANTIPARALLEL BRIDGES, SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-5), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-3), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-2), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I-1), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+0), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+1), SAME NUMBER PER 100 RESIDUES . 3 5.9 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+2), SAME NUMBER PER 100 RESIDUES . 5 9.8 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+3), SAME NUMBER PER 100 RESIDUES . 11 21.6 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+4), SAME NUMBER PER 100 RESIDUES . 0 0.0 TOTAL NUMBER OF HYDROGEN BONDS OF TYPE O(I)-->H-N(I+5), SAME NUMBER PER 100 RESIDUES . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 *** HISTOGRAMS OF *** . 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 RESIDUES PER ALPHA HELIX . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ANTIPARALLEL BRIDGES PER LADDER . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 LADDERS PER SHEET . # RESIDUE AA STRUCTURE BP1 BP2 ACC N-H-->O O-->H-N N-H-->O O-->H-N TCO KAPPA ALPHA PHI PSI X-CA Y-CA Z-CA 1 1 A G 0 0 80 0, 0.0 2,-0.4 0, 0.0 28,-0.0 0.000 360.0 360.0 360.0 -21.5 -7.0 6.3 -7.2 2 2 A G + 0 0 62 50,-0.2 2,-1.8 28,-0.0 50,-0.1 -0.991 360.0 14.0 139.4-131.7 -9.3 6.0 -4.2 3 3 A G S S+ 0 0 76 -2,-0.4 2,-0.2 48,-0.2 27,-0.1 -0.549 80.1 160.9 -81.3 83.8 -8.7 4.2 -0.9 4 4 A E + 0 0 45 -2,-1.8 25,-0.1 1,-0.1 -2,-0.0 -0.587 22.0 171.8 -99.9 166.2 -5.0 3.7 -1.2 5 5 A Q S S+ 0 0 63 -2,-0.2 -1,-0.1 23,-0.2 4,-0.1 0.493 78.1 39.6-143.8 -30.9 -2.5 2.9 1.7 6 6 A a S S+ 0 0 4 22,-0.1 22,-1.7 4,-0.1 5,-0.2 0.030 101.9 75.1-113.9 27.7 0.9 2.1 0.3 7 7 A b S S+ 0 0 28 20,-0.2 22,-0.1 3,-0.1 19,-0.1 0.808 106.3 19.5-101.0 -78.2 0.9 4.7 -2.5 8 8 A T S S+ 0 0 142 19,-0.1 -2,-0.1 2,-0.0 2,-0.1 0.811 134.2 45.6 -64.8 -24.9 1.5 8.2 -1.2 9 9 A S S S- 0 0 67 -4,-0.1 2,-0.3 0, 0.0 -4,-0.1 -0.171 88.6-118.8-100.6-161.3 3.0 6.6 2.0 10 10 A I + 0 0 90 -5,-0.1 2,-0.1 17,-0.1 17,-0.1 -0.890 30.4 171.4-148.2 115.1 5.4 3.7 2.3 11 11 A a - 0 0 32 -2,-0.3 2,-0.3 15,-0.2 15,-0.1 -0.295 24.0-121.9-106.6-164.6 4.8 0.3 4.0 12 12 A S > - 0 0 39 -2,-0.1 4,-1.8 1,-0.0 5,-0.3 -0.821 38.2 -86.1-134.5 175.9 6.8 -2.9 4.1 13 13 A L H > S+ 0 0 53 -2,-0.3 4,-1.2 1,-0.2 5,-0.1 0.773 124.9 64.3 -56.3 -20.0 6.4 -6.5 3.1 14 14 A Y H >> S+ 0 0 164 2,-0.2 3,-1.5 1,-0.2 4,-1.4 0.995 100.5 44.5 -67.4 -61.8 4.8 -6.8 6.6 15 15 A Q H 34 S+ 0 0 86 1,-0.3 3,-0.2 2,-0.2 -1,-0.2 0.859 114.1 53.8 -52.0 -30.9 1.8 -4.6 6.0 16 16 A L H >< S+ 0 0 10 -4,-1.8 3,-0.9 1,-0.2 4,-0.3 0.809 103.7 55.1 -74.5 -26.5 1.6 -6.5 2.7 17 17 A E H X< S+ 0 0 50 -3,-1.5 3,-0.7 -4,-1.2 -1,-0.2 0.710 95.4 67.4 -78.5 -16.9 1.5 -9.7 4.7 18 18 A N T 3< S+ 0 0 138 -4,-1.4 -1,-0.2 -3,-0.2 -2,-0.2 0.570 94.8 58.6 -78.6 -5.0 -1.4 -8.4 6.7 19 19 A Y T < S+ 0 0 82 -3,-0.9 28,-0.7 -4,-0.2 -1,-0.2 0.615 97.6 71.7 -96.8 -14.5 -3.5 -8.6 3.5 20 20 A c < 0 0 8 -3,-0.7 25,-0.1 -4,-0.3 18,-0.0 -0.205 360.0 360.0 -89.5-173.3 -3.0 -12.3 3.1 21 21 A N 0 0 114 -2,-0.0 24,-0.2 0, 0.0 -1,-0.1 0.995 360.0 360.0 68.1 360.0 -4.4 -15.2 5.1 22 !* 0 0 0 0, 0.0 0, 0.0 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0 360.0 0.0 0.0 0.0 23 1 B F 0 0 161 0, 0.0 3,-0.1 0, 0.0 0, 0.0 0.000 360.0 360.0 360.0-153.3 12.5 -3.6 1.1 24 2 B V - 0 0 122 1,-0.2 2,-0.1 -12,-0.0 0, 0.0 0.104 360.0 -41.7 -79.4-159.9 13.8 -0.4 -0.4 25 3 B N S S+ 0 0 110 2,-0.0 2,-0.3 -15,-0.0 -1,-0.2 -0.423 71.0 159.9 -67.6 138.8 11.7 2.6 -1.5 26 4 B Q - 0 0 97 -3,-0.1 2,-0.4 -2,-0.1 -15,-0.2 -0.973 24.7-166.3-159.9 143.4 8.5 1.6 -3.3 27 5 B H - 0 0 115 -2,-0.3 2,-0.3 -17,-0.1 -20,-0.2 -0.838 11.4-179.1-138.4 101.6 5.1 3.3 -4.0 28 6 B L - 0 0 30 -22,-1.7 -23,-0.2 -2,-0.4 -22,-0.1 -0.711 6.6-176.5 -98.5 150.9 2.2 1.1 -5.2 29 7 B b - 0 0 54 -2,-0.3 2,-0.6 -22,-0.1 3,-0.1 -0.404 61.9 -50.2-145.6 67.2 -1.2 2.6 -6.1 30 8 B G S >> S+ 0 0 2 1,-0.2 4,-2.2 21,-0.1 3,-1.9 -0.902 131.7 30.9 109.3-119.9 -3.8 -0.0 -7.0 31 9 B S H 3> S+ 0 0 93 -2,-0.6 4,-2.0 1,-0.3 -1,-0.2 0.897 125.7 49.0 -42.7 -45.6 -2.8 -2.6 -9.7 32 10 B D H 3> S+ 0 0 88 1,-0.2 4,-1.0 2,-0.2 -1,-0.3 0.795 107.3 57.0 -68.2 -23.8 0.8 -2.3 -8.5 33 11 B L H <> S+ 0 0 13 -3,-1.9 4,-0.9 2,-0.2 3,-0.3 0.923 108.2 44.3 -73.6 -41.7 -0.5 -2.7 -4.9 34 12 B V H X S+ 0 0 45 -4,-2.2 4,-3.0 1,-0.2 5,-0.3 0.870 105.6 62.4 -70.9 -31.8 -2.1 -6.1 -5.7 35 13 B E H X S+ 0 0 123 -4,-2.0 4,-0.6 -5,-0.4 -1,-0.2 0.875 107.9 44.1 -60.7 -30.7 1.1 -7.1 -7.6 36 14 B A H X S+ 0 0 14 -4,-1.0 4,-0.7 -3,-0.3 -1,-0.3 0.695 113.4 50.8 -85.9 -17.6 2.8 -6.7 -4.2 37 15 B L H X S+ 0 0 3 -4,-0.9 4,-1.5 -3,-0.2 5,-0.4 0.769 110.1 49.0 -88.2 -25.8 -0.0 -8.6 -2.5 38 16 B Y H < S+ 0 0 169 -4,-3.0 4,-0.4 1,-0.2 -2,-0.2 0.699 116.3 43.6 -83.7 -19.0 0.2 -11.4 -5.0 39 17 B L H < S+ 0 0 139 -4,-0.6 -2,-0.2 -5,-0.3 -1,-0.2 0.638 114.8 49.1 -98.5 -17.6 3.9 -11.6 -4.5 40 18 B V H < S+ 0 0 29 -4,-0.7 3,-0.2 -24,-0.1 4,-0.2 0.904 118.0 35.5 -88.0 -47.0 3.8 -11.3 -0.7 41 19 B c S >< S+ 0 0 8 -4,-1.5 2,-2.1 1,-0.2 3,-1.5 0.982 73.5 158.1 -71.4 -56.6 1.2 -13.9 0.1 42 20 B G T 3 S- 0 0 60 -5,-0.4 -1,-0.2 -4,-0.4 -2,-0.1 -0.431 83.2 -12.8 69.1 -84.9 2.1 -16.4 -2.7 43 21 B E T 3 S+ 0 0 179 -2,-2.1 -1,-0.3 -3,-0.2 -2,-0.1 0.661 117.9 83.9-119.6 -31.3 0.6 -19.5 -1.1 44 22 B R S < S- 0 0 143 -3,-1.5 2,-0.3 -4,-0.2 -2,-0.1 0.825 109.8-101.9 -44.5 -27.5 -0.2 -18.5 2.5 45 23 B G - 0 0 29 -24,-0.2 2,-0.2 -25,-0.1 -1,-0.2 -0.995 37.2-132.9 140.3-145.2 -3.4 -17.1 0.8 46 24 B F - 0 0 72 -2,-0.3 2,-0.3 -5,-0.1 -26,-0.2 -0.658 15.7-174.1 159.3 143.6 -4.4 -13.5 -0.2 47 25 B F + 0 0 142 -28,-0.7 2,-0.3 -2,-0.2 -6,-0.0 -0.998 9.2 159.3-154.9 153.0 -7.3 -11.2 0.1 48 26 B Y - 0 0 82 -2,-0.3 -29,-0.0 1,-0.0 -2,-0.0 -0.949 24.4-142.7-171.4 150.6 -8.4 -7.7 -1.2 49 27 B T - 0 0 114 -2,-0.3 -1,-0.0 1,-0.3 0, 0.0 0.480 67.5 -24.0 -91.9-123.2 -11.6 -5.6 -1.8 50 28 B K - 0 0 143 1,-0.1 -1,-0.3 0, 0.0 0, 0.0 -0.753 63.6-136.2 -95.7 141.8 -11.9 -3.3 -4.8 51 29 B P 0 0 74 0, 0.0 -48,-0.2 0, 0.0 -1,-0.1 0.012 360.0 360.0 -78.5-171.3 -8.9 -1.9 -6.5 52 30 B T 0 0 112 -50,-0.1 -50,-0.2 -23,-0.0 -22,-0.1 0.011 360.0 360.0 -52.9 360.0 -8.4 1.8 -7.7